如圖,直線與x軸相交于點A,與y軸相交于點B.
⑴求A、B兩點的坐標(biāo);
⑵過B點作直線BP與x軸相交于P,且使AP=2OA, 求ΔBOP的面積.
⑴ A() B(0,3) ⑵
解析試題分析:(1)要求出A,B兩點坐標(biāo)根據(jù)點在坐標(biāo)軸的特征。首先令y=0求出x的值,再令x=0求出y的值即可得出A、B兩點的坐標(biāo);(2)根據(jù)OP=2OA,要分類討論點P的方向,點P可以在點A的左側(cè)或者右側(cè)兩種情況,求出P點坐標(biāo),再根據(jù)三角形的面積公式求解即可.
試題解析:(1)∵令y=0,則x=;令x=0,則y=3,∴A() B(0,3),
(2)當(dāng)P在A左側(cè)時,AP=2OA=3,P().
∴,
當(dāng)P在A右側(cè)時,AP=20A=3,P().
∴.
考點:一次函數(shù)圖象上點的坐標(biāo)特征.
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(0,-1),B(1,0),求這個一次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
我市化工園區(qū)一化工廠,組織20輛汽車裝運A、B、C三種化學(xué)物資共200噸到某地.按計劃20輛汽車都要裝運,每輛汽車只能裝運同一種物資且必須裝滿.請結(jié)合表中提供的信息,解答下列問題:
(1)設(shè)裝運A種物資的車輛數(shù)為x,裝運B種物資的車輛數(shù)為y.求y與x的函數(shù)關(guān)系式;
(2)如果裝運A種物資的車輛數(shù)不少于5輛,裝運B種物資的車輛數(shù)不少于4輛,那么車輛的安排有幾種方案?并寫出每種安排方案;
(3)在(2)的條件下,若要求總運費最少,應(yīng)采用哪種安排方案?請求出最少總運費.
物資種類 | A | B | C |
每輛汽車運載量(噸) | 12 | 10 | 8 |
每噸所需運費(元/噸) | 240 | 320 | 200 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知函數(shù)的圖象與y軸交于點A,一次函數(shù) 的圖象 經(jīng)過點B(0,-1),并且與x軸以及的圖象分別交于點C、D.
(1)若點D的橫坐標(biāo)為1,求四邊形AOCD的面積(即圖中陰影部分的面積);
(2)在第(1)小題的條件下,在y軸上是否存在這樣的點P,使得以點P、B、D為頂點的三角形是等腰三角形.如果存在,求出點P坐標(biāo);如果不存在,說明理由.
(3)若一次函數(shù)的圖象與函數(shù)的圖象的交點D始終在第一象限,則系數(shù)k的取值范圍是 .(請直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC三個頂點的坐標(biāo)分別為A(2,3)、B(1,1)、C(5,1),先將△ABC作關(guān)于x軸的軸對稱圖形得到△A1B1C1,再將△A1B1C1向左平移5個單位得△A2B2C2.
(1)分別畫出兩次變換的像△A1B1C1與△A2B2C2;
(2)求出邊AB所在直線的函數(shù)解析式,并判斷點C2是否在該直線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)的圖象與x軸交于兩個不同的點A(﹣2,0)、B(4,0),與y軸交于點C(0,3),連接BC、AC,該二次函數(shù)圖象的對稱軸與x軸相交于點D.
(1)求這個二次函數(shù)的解析式、
(2)點D的坐標(biāo)及直線BC的函數(shù)解析式;
(3)點Q在線段BC上,使得以點Q、D、B為頂點的三角形與△ABC相似,求出點Q的坐標(biāo);
(4)在(3)的條件下,若存在點Q,請任選一個Q點求出△BDQ外接圓圓心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).
(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com