【題目】某校七年級10個班的300名學生即將參加學校舉行的研究旅行活動,學校提出以下4個活動主題:A.赤水丹霞地貌考察;B.平塘天文知識考察;C.山關紅色文化考察;D.海龍電土司文化考察,為了解學生喜歡的活動主題,學生會開展了一次調查研究,請將下面的過程補全
(1)收集數(shù)據(jù):學生會計劃調查學生喜歡的活動主題情況,下面抽樣調查的對象選擇合理的是______.(填序號)
①選擇七年級3班、4班、5班學生作為調查對象
②選擇學校旅游攝影社團的學生作為調查對象
③選擇各班學號為6的倍數(shù)的學生作為調查對象
(2)整理、描述數(shù)據(jù):通過調査后,學生會同學繪制了如下兩幅不完整的統(tǒng)計圖,請把統(tǒng)計圖補充完整
某校七年級學生喜歡的活動主題條形統(tǒng)計圖某校七年級學生喜歡的活動主題扇形統(tǒng)計圖
(3)分析數(shù)據(jù)、推斷結論:請你根據(jù)上述調查結果向學校推薦本次活動的主題,你的推薦是______(填A-D的字母代號),估算全年級大約有多少名學生喜歡這個主題活動
(4)若在5名學生會干部(3男2女)中,隨機選取2名同學擔任活動的組長和副組長,求抽出的兩名同學恰好是1男1女的概率.
【答案】(1)③;(2)補全統(tǒng)計圖見解析;(3)B;(4)2名同學恰好是1男1女的概率為.
【解析】
(1)根據(jù)抽樣調查的代表性求解可得;
(2)先求出被調查的總人數(shù),再乘以D主題對應的百分比求得其人數(shù),繼而根據(jù)各主題人數(shù)之和等于總人數(shù)求得B的人數(shù),然后求出A、B對應的百分比,從而補全圖形;
(3)由統(tǒng)計圖可知選擇的主題,再利用樣本估計總體思想求解可得;
(4)用A表示男生,B表示女生,畫出樹形圖,再根據(jù)概率公式進行計算即可.
解:(1)抽樣調查的對象選擇合理的是:③選擇各班學號為6的倍數(shù)的學生作為調查對象,故答案為③;
(2)被調查的總人數(shù)為13÷26%=50(人),
則D主題人數(shù)為50×20%=10(人),B主題人數(shù)為50-(10+13+10)=17(人),
∴B主題對應百分比為×100%=34%,A主題對應的百分比為×100%=20%,
補全統(tǒng)計圖如下:
(3)由統(tǒng)計圖知,在所抽取樣本中選擇B主題的人數(shù)最多,
所以推薦的主題是B.平塘天文知識考察,
估算全年級喜歡這個主題活動的學生有300×34%=102(人),
故答案為B;
(4)用A表示男生,B表示女生,畫圖如下:
共有20種情況,恰好是1男1女的有12種,
所以2名同學恰好是1男1女的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】在中,以為斜邊,作直角,使點落在內,.
(1)如圖1,若,,,點,、分別為,的中點,連接,求線段的長;
(2)如圖2,若,把繞點遞時針旋轉一定角度,得到,連接并延長變于點,求證:;
(3)如圖3,若,過點的直線交于點,交于點,,且,請直接寫出線段、、之間的關系(不需要證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文化用品商店準備購進甲、乙兩種書包進行銷售,經(jīng)調查,乙書包的單價比甲書包貴元,用元購進乙書包的個數(shù)與用元購進甲書包的個數(shù)相等.
(1)求甲、乙兩種書包的進價分別為多少元?
(2)商戶購進甲、乙兩種書包共個進行試銷,其中甲書包的個數(shù)不少于個,且甲書包的個數(shù) 的倍不大于乙書包的個數(shù),已知甲書包的售價為元/個,乙書包的售價為元/個,且 全部售出,設購進甲書包個,求該商店銷售這批書包的利潤與之間的函數(shù)關系式,并 寫出的取值范圍;
(3)在(2)的條件下,該店將個書包全部售出后,使用所獲的利潤又購進個書包捐贈給 貧困地區(qū)兒童,這樣該商店這批書包共獲利元.請求出該店第二次進貨所選用的進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線過點.
(1)若點也在該拋物線上,請用含的關系式表示;
(2)若該拋物線上任意不同兩點、都滿足:當時,;當時,;若以原點為圓心,為半徑的圓與拋物線的另兩個交點為、(點在點左側),且有一個內角為,求拋物線的解析式;
(3)在(2)的條件下,若點與點關于點對稱,且、、三點共線,求證:平分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,⊙O的半徑為2,點P是AB邊上的動點,過點P作⊙O的一條切線PC(點C為切點),則線段PC長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達式;
(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個單位,再向上平移5個單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點為點A.函數(shù)y=ax2+bx+c的圖象的頂點為點C,兩函數(shù)圖象分別交于B、D兩點.
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.
(3)如圖3,連接BD,點M是y軸上的動點,在平面內是否存在一點N,使以B、D、M、N為頂點的四邊形為矩形?若存在,請求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點A、B重合)的任一點,點C、D為⊙O上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com