【題目】解方程:
(1)x2+2x=0;
(2)x2-x-1=0.

【答案】
(1)

解:x(x+2)=0

∴x1=0或x2=-2


(2)

解:∵a=1,b=-1,c=-1

∴Δ=b2-4ac=(-1)2-4×1×(-1)=5

x=

x1= 或x2=


【解析】(1)此方程用因式分解法比較簡單而且不易出錯,注意不要丟掉x1=0這個根;
(2)此方程即可用公式法,也可用配方法來解.
【考點精析】認真審題,首先需要了解公式法(要用公式解方程,首先化成一般式.調整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計算方程判別式.判別式值與零比,有無實根便得知.有實根可套公式,沒有實根要告之),還要掌握因式分解法(已知未知先分離,因式分解是其次.調整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ 與直線AB交于點A(﹣1,0),B(4, ),點D是拋物線A、B兩點間部分上的一個動點(不與點A、B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.

(1)求拋物線的表達式;
(2)設點D的橫坐標為m,△ADB的面積為S,求S關于m的函數(shù)關系式,并求出當S取最大值時的點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA勻速移動,當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動,DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).
解答下列問題:

(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,
設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關系式,是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:( ﹣π)0﹣6tan30°+( 2+|1+ |.
(2)解不等式組 ,并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△DEF均是邊長為4的等邊三角形,△DEF的頂點D為△ABC的一邊BC的中點,△DEF繞點D旋轉,且邊DF,DE始終分別交△ABC的邊AB,AC于點H,G,圖中直線BC兩側的圖形關于直線BC成軸對稱.連結HH′,HG,GG′,H′G′,其中HH′、GG′分別交BC于點I,J.

(1)求證:△DHB∽△GDC;
(2)設CG=x,四邊形HH′G′G的面積為y,
①求y關于x的函數(shù)解析式和自變量x的取值范圍.
②求當x為何值時,y的值最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:兩條拋物線頂點都在直線y=x上,且兩條拋物線關于原點成中心對稱,則稱這兩條拋物線為一對“友好拋物線”.

(1)拋物線y=2(x-1)2+1如圖1所示,請畫出它的“友好拋物線”,并直接寫出它的解析式;
(確認無誤后,請用黑色水筆描黑)
(2)一對“友好拋物線”,其中一條拋物線的解析式為y= -(x+h)2-h,這對“友好拋物線”與y軸交點記為A,B,記AB=n(當A與B重合時,記n=0),現(xiàn)我們來探究n與h的關系;
①當h≥0時,如圖2所示,求n與h的函數(shù)關系式;
②當h<0時,求n與h的函數(shù)關系式;
(3)在(2)的條件下,要使 ≤n≤ ,試直接寫出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個交點,請用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A、B兩點,其中點A的坐標為(﹣1,0),AB=4,請求出該二次函數(shù)的表達式及頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,方格紙中的每個小方格都是邊長為1的正方形,Rt△ABC的項點均在格點上.A(﹣6,1)B(﹣3,1)C(﹣3,3)

(1)將Rt△ABC沿x軸正方向平移5個單位長度后得到Rt△A1B1C1 . 試在圖中畫出Rt△A1B1C1 , 并寫出C1點的坐標;
(2)將Rt△ABC繞點B順時針旋轉90°后得到Rt△A2B2C2 . 試在圖中畫出Rt△A2B2C2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在多邊形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,過點E作EF∥CB交AB于點F,F(xiàn)B=1,過AE上的點P作PQ∥AB交線段EF于點O,交折線BCD于點Q,設AP=x,POOQ=y.

(1)①延長BC交ED于點M,則MD= , DC=

(2)求y關于x的函數(shù)解析式;
(3)當a≤x≤ (a>0)時,9a≤y≤6b,求a,b的值;
(4)當1≤y≤3時,請直接寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案