【題目】如圖,在ABCD中,AB:BC=2:3,點E、F分別在邊CD、BC上,點E是邊CD的中點,CF=2BF,∠A=120°,過點A分別作AP⊥BE、AQ⊥DF,垂足分別為P、Q,那么 的值為

【答案】
【解析】解:如圖,連接AE、AF,過點A分別作AP⊥BE、AQ⊥DF,垂足分別為P、Q,作DH⊥BC于H,EG⊥BC于G,設(shè)AB=2a.BC=3a.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC,∠BAD=∠BCD=120°,
∴SABE=SADF= S平行四邊形ABCD
在Rt△CDH中,∵∠H=90°,CD=AB=2a,∠DCH=60°,
∴CH=a,DH= a,
在Rt△DFH中,DF= = =2 a,
在Rt△ECG中,∵CE=a,
∴CG= a,GE= a,
在Rt△BEG中,BE= = = a,
APBE= DFAQ,
= = ,
所以答案是
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點出發(fā)的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設(shè)備共10臺.已知用90萬元購買A型號的污水處理設(shè)備的臺數(shù)與用75萬元購買B型號的污水處理設(shè)備的臺數(shù)相同,每臺設(shè)備價格及月處理污水量如下表所示:

污水處理設(shè)備

A型

B型

價格(萬元/臺)

m

m﹣3

月處理污水量(噸/臺)

220

180


(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,CD⊥AB于點D,⊙D經(jīng)過點B,與BC交于點E,與AB交與點F.已知tanA= ,cot∠ABC= ,AD=8.
(1)⊙D的半徑;
(2)CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,點D在邊BC上,∠DAB=∠B,點E在邊AC上,滿足AECD=ADCE.
(1)求證:DE∥AB;
(2)如果點F是DE延長線上一點,且BD是DF和AB的比例中項,聯(lián)結(jié)AF.求證:DF=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M是△ABC的角平分線AT的中點,點D、E分別在AB、AC邊上,線段DE過點M,且∠ADE=∠C,那么△ADE和△ABC的面積比是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是射線CB上的動點,點F是射線CD上一點,且AF⊥AE,射線EF與對角線BD交于點G,與射線AD交于點M;

(1)當點E在線段BC上時,求證:△AEF∽△ABD;
(2)在(1)的條件下,聯(lián)結(jié)AG,設(shè)BE=x,tan∠MAG=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)當△AGM與△ADF相似時,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加快我省城鄉(xiāng)公路建設(shè),我省計劃“十三五”期間高速公路運營里程達1000公里,進一步打造城鄉(xiāng)快速連接通道,某地計劃修建一條高速公路,需在小山東西兩側(cè)A,B之間開通一條隧道,工程技術(shù)人員乘坐熱氣球?qū)π∩絻蓚?cè)A、B之間的距離進行了測量,他們從A處乘坐熱氣球出發(fā),由于受西風的影響,熱氣球以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達C處,此時熱氣球上的人測得小山西側(cè)B點的俯角為30°,則小山東西兩側(cè)A、B兩點間的距離為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=x-1與反比例函數(shù)y= 的圖像交于點A(2,1),B(-1,-2),則使y1>y2的x的取值范圍是( ).


A.x>2
B.x>2或-1<x<0
C.-1<x<2
D.x>2或x<-1

查看答案和解析>>

同步練習冊答案