【題目】如圖,在△ABC中,ABAC,點DAB上,點EAC延長線上,且BDCE,連接DEBC于點F,作DHBC于點H,連接CD.若tanDFH,SBCD18,則DE的長為_____

【答案】6

【解析】

如圖,作EJBCBC的延長線于J.利用全等三角形的性質(zhì)證明DHDJFHFJ,BCHJ2FH,設(shè)DHmFH2m,構(gòu)建方程即可解決問題.

解:如圖,作EJBCBC的延長線于J

ABAC,

∴∠B=∠ACB=∠ECJ

BDEC,∠DHB=∠J90°,

∴△DHB≌△EJCAAS),

DHEJ,BHCJ

BCHJ,

∵∠DHF=∠J90°,∠DFH=∠EFJ,

∴△DHF≌△EJFAAS),

BCHJ2FHDFEF,

tanDFH

∴可以假設(shè)DHm,FH2m,則CB4m,

SBCD18

×4m×m18,

m3或﹣3(舍棄),

DH3,FH6

DFEF,

DE2DF

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的箱子里放有4個乒乓球,每個乒乓球上分別寫有數(shù)字1、2、3、4,從箱中摸出一個球記下數(shù)字后放回箱中,搖勻后再摸出一個球記下數(shù)字.若將第一次摸出的球上數(shù)字記為點的橫坐標(biāo),第二次摸出的球上數(shù)字記為點的縱坐標(biāo).

(1)請問兩次摸球后所有可能的點的坐標(biāo)有幾個,并用列表法或樹狀圖法說明;

(2)求這樣的點落在以M(2,2)為圓心,半徑為2的圓內(nèi)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳市政府計劃投資1.4萬億元實施東進(jìn)戰(zhàn)略.為了解深圳市民對東進(jìn)戰(zhàn)略的關(guān)注情況.某校數(shù)學(xué)興趣小組隨機(jī)采訪部分深圳市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:

關(guān)注情況

頻數(shù)

頻率

A.高度關(guān)注

m

0.1

B.一般關(guān)注

100

0.5

C.不關(guān)注

30

n

D.不知道

50

0.25

(1)根據(jù)上述統(tǒng)計圖可得此次采訪的人數(shù)為   人,m   n   ;

(2)根據(jù)以上信息補(bǔ)全條形統(tǒng)計圖;

(3)根據(jù)上述采訪結(jié)果,請估計在15000名深圳市民中,高度關(guān)注東進(jìn)戰(zhàn)略的深圳市民約有   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教室的開關(guān)控制板上有四個外形完全相同的開關(guān),其中兩個分別控制A、B

電燈,另兩個分別控制C、D兩個.已知電燈、扇均正常,且處于不工作狀態(tài),開

關(guān)與電燈、電扇的對應(yīng)關(guān)系未知.

1)若四個開關(guān)均正常,則任意按下一個開關(guān),正好一燈亮的概率是多少?

2)若其中一個控制電燈的開關(guān)壞了,則任意按下兩個開關(guān),正好一燈亮和一個扇轉(zhuǎn)的概率是多少?請用樹狀圖或列表法加以說明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“農(nóng)民也能報銷醫(yī)療費了!”這是國家推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費,年終時可得到按一定比例返回的返回款,這一舉措極大地增強(qiáng)了農(nóng)民抵御大病風(fēng)險的能力.小華與同學(xué)隨機(jī)調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖.


根據(jù)以上信息,解答以下問題:

(1)本次調(diào)查了______名村民,被調(diào)查的村民中,有______人參加合作醫(yī)療得到了返回款?

(2)若該鄉(xiāng)有10000名村民,請你估計有多少人參加了合作醫(yī)療?

(3)要使兩年后參加合作醫(yī)療的人數(shù)增加到9680人,假設(shè)這兩年的年平均增長率相同,求年平均增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,AB6BC8,∠BAC,∠ACB的平分線相交于點E,過點EEFBCAC于點F,則EF的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣5,0)和點B10).

1)求拋物線的解析式及頂點D的坐標(biāo);

2)點P是拋物線上A、D之間的一點,過點PPEx軸于點E,PGy軸,交拋物線于點G,過點GGFx軸于點F,當(dāng)矩形PEFG的周長最大時,求點P的橫坐標(biāo);

3)如圖2,連接AD、BD,點M在線段AB上(不與AB重合),作∠DMN=∠DBA,MN交線段AD于點N,是否存在這樣點M,使得DMN為等腰三角形?若存在,求出AN的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)x2+x-3=0

(2)x2-6x=16

(3)2(x-3)=3x(x-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位籃球運動員在距離籃圈中心水平距離處起跳投籃,球沿一條拋物線運動,當(dāng)球運動的水平距離為時,達(dá)到最大高度,然后準(zhǔn)確落入籃筐內(nèi).已知籃圈中心距離地面高度為,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是(

A.籃圈中心的坐標(biāo)是

B.此拋物線的解析式是

C.此拋物線的頂點坐標(biāo)是

D.籃球出手時離地面的高度是

查看答案和解析>>

同步練習(xí)冊答案