【題目】從M地到N地有一條普通公路,總路程為120km;有一條高速公路,總路程為126km.甲車和乙車同時(shí)從M地開往N地,甲車全程走普通公路,乙車先行駛了另一段普通公路,然后再上高速公路.假設(shè)兩車在普通公路和高速公路上分別保持勻速行駛,其中在普通公路上的行車速度為60km/h,在高速公路上的行車速度為100km/h.設(shè)兩車出發(fā)x h時(shí),距N地的路程為y km,圖中的線段AB與折線ACD分別表示甲車與乙車的y與x之間的函數(shù)關(guān)系.

(1)填空:a= ,b= ;

(2)求線段AB、CD所表示的y與x之間的函數(shù)關(guān)系式;

(3)兩車在何時(shí)間段內(nèi)離N地的路程之差達(dá)到或超過30km?

【答案】(1)1.36,2;(2)y1=﹣60x+120;y2=﹣100x+136;

(3)當(dāng)1.15≤x≤1.5時(shí),兩車離N地的路程之差達(dá)到或超過30km.

【解析】

試題分析:(1)求出C坐標(biāo),再根據(jù)時(shí)間=路程÷速度分別求出甲車在普通公路上行駛的時(shí)間及乙車在高速公路上行駛的時(shí)間,可得a、b的值;

(2)根據(jù)A、B、C、D四點(diǎn)坐標(biāo)待定系數(shù)法求解可得線段AB、CD所表示的y與x之間的函數(shù)關(guān)系式;

(3)分類討論:當(dāng)0<x<0.1時(shí),由解析式可知甲、乙兩車距離差最大為12;當(dāng)0.1≤x<1.36時(shí),由y1﹣y2≥30列不等式可得x的范圍;當(dāng)1.36≤x≤2時(shí),由y1≥30列不等式可得此時(shí)x的范圍,綜合以上三種情況可得答案.

試題解析:(1)根據(jù)題意,知:點(diǎn)C的坐標(biāo)為(0.1,126),

∴a=0.1+=1.36,b==2,

故答案為:1.36,2.

(2)設(shè)線段AB所表示的y與x之間的函數(shù)關(guān)系式分別為y1=k1x+b1

將A(0,120)、B(2,0)的坐標(biāo)代入得:

,

解得:,

∴y1=﹣60x+120;

設(shè)線段CD所表示的y與x之間的函數(shù)關(guān)系式分別為y2=k2x+b2

將C(0.1,126)、D(1.36,0)的坐標(biāo)代入得:

,

解得:,

∴y2=﹣100x+136.

(3)由題意,①當(dāng)x=0.1時(shí),兩車離N地的路程之差是12km,

∴當(dāng)0<x<0.1時(shí),兩車離N地的路程之差不可能達(dá)到或超過30km.

②當(dāng)0.1≤x<1.36時(shí),由y1﹣y2≥30,得(﹣60x+120)﹣(﹣100x+136)≥30,

解得x≥1.15.

即當(dāng)1.15≤x<1.36時(shí),兩車離N地的路程之差達(dá)到或超過30km.

③當(dāng)1.36≤x≤2時(shí),由y1≥30,得﹣60x+120≥30,解得x≤1.5.

即當(dāng)1.36≤x≤1.5時(shí),兩車離N地的路程之差達(dá)到或超過30km.

綜上,當(dāng)1.15≤x≤1.5時(shí),兩車離N地的路程之差達(dá)到或超過30km.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)周長為40厘米的正方形,從四個(gè)角各剪去一個(gè)正方形,做成一個(gè)無蓋盒子.設(shè)這個(gè)盒子的底面積為y,剪去的正方形的邊長為x,求有關(guān)y的二次函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場上直接銷售鮮奶,每噸可獲取利潤500元;制成酸奶銷售,每噸可獲取利潤1200元;制成奶片銷售,每噸可獲取利潤 2000元。

該加工廠的生產(chǎn)能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸。受人員限制,兩種加工方式不可同時(shí)進(jìn)行。受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷售或加工完畢。為此,該廠設(shè)計(jì)了兩種可行方案:

方案一:盡可能多地制成奶片,其余直接銷售鮮奶;

方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。

你認(rèn)為哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點(diǎn)E.

(1)求證:△ABD≌△EBD;

(2)過點(diǎn)E作EF∥DA,交BD于點(diǎn)F,連接AF.求證:四邊形AFED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)中,點(diǎn)M-2,3)在_______象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉辦中學(xué)生足球賽,初中男子組共有市直學(xué)校的A、B兩隊(duì)和縣區(qū)學(xué)校的e、f、g、h四隊(duì)報(bào)名參賽,六支球隊(duì)分成甲、乙兩組,甲組由A、e、f三隊(duì)組成,乙組由B、g、h三隊(duì)組成,現(xiàn)要從甲、乙兩組中各隨機(jī)抽取一支球隊(duì)進(jìn)行首場比賽.

(1)在甲組中,首場比賽抽到e隊(duì)的概率是 ;

(2)請你用畫樹狀圖或列表的方法,求首場比賽出場的兩個(gè)隊(duì)都是縣區(qū)學(xué)校隊(duì)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.

(1)求證:四邊形DBFE是平行四邊形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBFE是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若將左圖正方形剪成四塊,恰能拼成右圖的矩形,設(shè)a=1,則b=(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于EBECD于點(diǎn)F,∠1+∠2=90°.

(1)試說明:ABCD

(2)若∠2=25°,求∠BFC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案