(2011•錦州一模)如圖,AB是⊙O的直徑,過⊙O上的點E作⊙O的切線,交AB延長線于點C,過A點作AD⊥CE于點D,且與⊙O交于點F,連接AE、BF.
(1)AE是否為∠CAD的平分線,說明理由;
(2)若CB=2,CE=4,求⊙O的半徑及BF的長.
分析:(1)AE是∠CAD的平分線.理由:連接OE,首先利用切線性質(zhì)得到OE⊥GE,而AD⊥CE,由此得到OE∥AD,然后利用平行線的性質(zhì)和等腰三角形的性質(zhì)即可求解;
(2)設⊙O的半徑為r,在Rt△CEO中利用勾股定理可以列出關于r的方程,解方程求出r,設BF與OE交于點G,然后利用已知條件和平行線的性質(zhì)證明△OBG∽△OCE,接著他相似三角形的性質(zhì)即可求解.
解答:解:(1)AE是∠CAD的平分線.
理由:連接OE,
∵CE是⊙O的切線,
∴OE⊥GE,
∵AD⊥CE,
∴OE∥AD,
∴∠OEA=∠DAE,
∵OE=OA,
∴∠CAE=∠OEA,
∴CAE∠=∠DAE,
∴AE是∠CAD的角平分線;

(2)設⊙O的半徑為r,
在Rt△CEO中,∵CO2=OE2+CE2,CB=2,CE=4,
∴(2+r)2=r2+16,
∴r=3,
設BF與OE交于點G,
∵∠AFB=90°,
∴BF⊥AD,∵AD⊥CE,
∴BF∥CD,
∵OE⊥EC,
∴OE⊥BF,
∴BG=GF,
∵BF∥CD,
∴△OBG∽△OCE,
∴OB:OC=BG:CE,
3
5
=
BG
4
,
∴BG=
12
5
,
∴BF=2BG=
24
5
點評:本題考查了圓的切線性質(zhì),平行線的性質(zhì)與判定及相似三角形的性質(zhì)與判定.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•錦州一模)有一列數(shù)a1,a2,a3,a4,a5,…,其中a1=5×2+1,a2=5×3+2,a3=5×4+3,a4=5×5+4,a5=5×6+5,…,當an=2009時,n的值等于
334
334

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•錦州一模)如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,P為BC邊上任意一點,點Q為AC邊動點,分別以CP、PQ為邊做等邊△PCF和等邊△PQE,連接EF.
(1)試探索EF與AB位置關系,并證明;
(2)如圖2,當點P為BC延長線上任意一點時,(1)結論是否成立?請說明理由.
(3)如圖3,在Rt△ABC中,∠ACB=90°,∠A=m°,P為BC延長線上一點,點Q為AC邊動點,分別以CP、PQ為腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,連接EF.要使(1)的結論依然成立,則需要添加怎樣的條件?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年遼寧省某市二完中中考數(shù)學模擬試卷(解析版) 題型:解答題

(2011•錦州一模)如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=-2與x軸交于點C,直線y=-2x+1經(jīng)過拋物線上一點B(2,m),且與y軸.直線x=-2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)關系式;
(2)①判斷△CBE的形狀,并說明理由;②判斷CD與BE的位置關系;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案