【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE交BD于點(diǎn)O,那么圖中的等腰三角形個數(shù)( 。
A.4B.6C.7D.8
【答案】D
【解析】
由在△ABC中,AB=AC,∠A=36°,根據(jù)等邊對等角,即可求得∠ABC與∠ACB的度數(shù),又由BD、CE分別為∠ABC與∠ACB的角平分線,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形內(nèi)角和定理與三角形外角的性質(zhì),即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角對等邊,即可求得答案.
解:∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB==72°,
∵BD平分∠ABC,CE平分∠ACB,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BO=CO,
∴△ABC,△ABD,△ACE,△BOC是等腰三角形,
∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,
∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,
∴BE=BO,CO=CD,BC=BD=CE,
∴△BEO,△CDO,△BCD,△CBE是等腰三角形.
∴圖中的等腰三角形有8個.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=60°,連接PO并延長與⊙O交于C點(diǎn),連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應(yīng)市場變化調(diào)整第一個月的銷售價,預(yù)計銷售定價每增加1元,銷售量將減少10套。
(1)若設(shè)第二個月的銷售定價每套增加x元,填寫下表。
時間 | 第一個月 | 第二個月 |
每套銷售定價(元) | ||
銷售量(套) |
(2)若商店預(yù)計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,小明和父母一起開車到距家200千米的景點(diǎn)旅游.出發(fā)前,汽車油箱內(nèi)儲油45升;當(dāng)行駛150千米時,發(fā)現(xiàn)油箱剩余油量為30升.
(1)已知油箱內(nèi)余油量y(升)是行駛路程x(千米)的一次函數(shù),求y與x的函數(shù)關(guān)系式;
(2)當(dāng)油箱中余油量少于3升時,汽車將自動報警.如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上.
(1)請直接寫出線段BE與線段CD的關(guān)系: ;
(2)如圖2,將圖1中的△ABC繞點(diǎn)A順時針旋轉(zhuǎn)角α(0<α<360°),
①(1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;
②當(dāng)AC=ED時,探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面內(nèi),E、C、N在同一條直線上,求條幅的長度(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點(diǎn)F是AB的中點(diǎn),E為BC邊上一點(diǎn),且EF⊥ED,連結(jié)DF,M為DF的中點(diǎn),連結(jié)MA,ME.若AM⊥ME,則AE的長為( )
A.5 B.2 C.2 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,的半徑為,過作直線平行于軸,設(shè)與軸交點(diǎn)為,點(diǎn)在上運(yùn)動.
(1)當(dāng)點(diǎn)運(yùn)動到圓上時,求此時點(diǎn)的坐標(biāo)
(2)如圖,當(dāng)點(diǎn)的坐標(biāo)為時,連接,作于,求的長和的長
(3)在(2)條件下,試判斷直線與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F分別是邊AD,BC的中點(diǎn),AC分別交BE,DF于G,H,試判斷下列結(jié)論:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四邊形GHDE=2:3,其中正確的結(jié)論是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com