【題目】已知拋物線yx25x+4x軸交于點(diǎn)AB,與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)P

1)求△ABP的面積;

2)在該拋物線上是否存在點(diǎn)Q,使SABQ8SABP?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1SABP;(2)存在,Q17,18Q2(﹣218).

【解析】

1)令y0,求出x的值即可得出AB兩點(diǎn)的坐標(biāo);再令x0,求出y的值可得出C點(diǎn)坐標(biāo);利用拋物線的頂點(diǎn)坐標(biāo)公式即可得出P點(diǎn)的坐標(biāo),進(jìn)而可求出△ABP的面積;

2)該拋物線上存在點(diǎn)Q,使SABQ8SABP,若確定Q點(diǎn)的縱坐標(biāo),代入拋物線解析式求出橫坐標(biāo)即可.

解:(1)∵拋物線yx25x+4中,令y0,則x25x+40,即(x4)(x1)=0,

解得x4x1;

A1,0),B4,0);

x0,得y4,

C04).

∵點(diǎn)P是拋物線的頂點(diǎn),拋物線化為頂點(diǎn)式為,如圖:

P),

AB3,

SABP×3×;

2)存在,理由如下:

因?yàn)?/span>SABQ8SABP,所以hABQ8hABP18,

所以令y18,則x25x+418,

解得x17,x2=﹣2,

所以Q1718);Q2(﹣2,18).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時(shí)停止.甲車行駛一段時(shí)間后,因故停車0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒(méi)有故障停車,求可以提前多長(zhǎng)時(shí)間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】. 在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字﹣1、02,它們除了數(shù)字不同外,其他都完全相同.

1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為 ;

2)小麗先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再?gòu)牟即须S機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的縱坐標(biāo),請(qǐng)用樹(shù)狀圖或表格列出點(diǎn)M所有可能的坐標(biāo),并求出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過(guò)點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為( 。

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

2

1

0

1

2

y

0

4

6

6

4

從上表可知,下列說(shuō)法中正確的是( 。

A. 拋物線與x軸的一個(gè)交點(diǎn)為(40

B. 函數(shù)yax2+bx+c的最大值為6

C. 拋物線的對(duì)稱軸是x

D. 在對(duì)稱軸右側(cè),yx增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為 3 的正方形中, 點(diǎn)在射線上, ,連接交射線于點(diǎn),若沿直線翻折, 點(diǎn)落在點(diǎn)

1)如圖1,若點(diǎn)在線段上,求的長(zhǎng);

2)求的值;

3)如果題設(shè)中改為, 其它條件都不變, 試寫出翻折后與正方形公共部分的面積的關(guān)系式及自變量的取值范圍(只要寫出結(jié)論,不需寫出解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=12,BC=8AC=6,點(diǎn)D、E分別在ABAC上,如果以AD、E為頂點(diǎn)的三角形和以AB、C為頂點(diǎn)的三角形相似,且相似比為

1)根據(jù)題意確定D、E的位置,畫出簡(jiǎn)圖;

2)求AD、AEDE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓心O到直線l的距離為d,的半徑為R,若d,R是方程的兩個(gè)根,則直線和圓的位置關(guān)系是________;若d,R是方程的兩個(gè)根,則________時(shí),直線與圓相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案