【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥CA,AE∥BD.
(1)求證:四邊形AODE是菱形;
(2)若將題設(shè)中“矩形ABCD”這一條件改為“菱形ABCD”,其余條件不變,則四邊形AODE的形狀是什么?不必說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)平行四邊形AODE是矩形,見(jiàn)解析.
【解析】
(1)根據(jù)矩形的性質(zhì)求出OA=OD,證出四邊形AODE是平行四邊形即可;
(2)根據(jù)菱形的性質(zhì)求出∠AOD=90°,再證出四邊形AODE是平行四邊形即可.
(1)證明:∵矩形ABCD,
∴OA=OC=AC,OD=OB=BD,AC=BD,
∴OA=OD,
∵DE∥CA,AE∥BD,
∴四邊形AODE是平行四邊形,
∴四邊形AODE是菱形.
(2)解:∵DE∥CA,AE∥BD,
∴四邊形AODE是平行四邊形,
∵菱形ABCD,
∴AC⊥BD,
∴∠AOD=90°,
∴平行四邊形AODE是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置5個(gè)正方形,點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O﹦60,B1C1∥B2C2∥B3C3,則點(diǎn)A3到x軸的距離是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初中生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問(wèn)題之一.為此某市教育局對(duì)該市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近20000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把八個(gè)完全相同的小球平分為兩組,每組中每個(gè)分別寫上1,2,3,4四個(gè)數(shù)字,然后分別裝入不透明的口袋內(nèi)攪勻,從第一個(gè)口袋內(nèi)取出一個(gè)數(shù)記下數(shù)字后作為點(diǎn)P的橫坐標(biāo)x,然后再?gòu)牡诙䝼(gè)口袋中取出一個(gè)球記下數(shù)字后作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P(x,y)落在直線y=﹣x+5上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】風(fēng)電已成為我國(guó)繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測(cè)得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測(cè)得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長(zhǎng)度為35米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=4,∠DAB=120°,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿AC向終點(diǎn)C運(yùn)動(dòng).過(guò)P作PE⊥AB交AB于點(diǎn)E,作PF⊥AD交AD于點(diǎn)F,設(shè)四邊形AEPF與△ABD的重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.
(1)用含t的代數(shù)式表示線段BE的長(zhǎng);
(2)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),求t的值;
(3)求S與t之間的函數(shù)關(guān)系式;
(4)在點(diǎn)P出發(fā)的同時(shí),有一點(diǎn)Q從點(diǎn)C出發(fā),以每秒6個(gè)單位的速度沿折線C﹣D﹣A﹣B運(yùn)動(dòng),設(shè)點(diǎn)Q關(guān)于AC的對(duì)稱點(diǎn)是Q',直接寫出PQ'與菱形ABCD的邊垂直時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“用三角板畫圓的切線”的畫圖過(guò)程.
如圖1,已知圓上一點(diǎn)A,畫過(guò)A點(diǎn)的圓的切線.
畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過(guò)點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;
(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過(guò)點(diǎn)B,畫出另一條直角邊所在的直線AD.
所以直線AD就是過(guò)點(diǎn)A的圓的切線.
請(qǐng)回答:該畫圖的依據(jù)是_______________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,直線y=﹣ x+4 與x軸相交于點(diǎn)A,與直線y= x相交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo);
(2)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O、A重合),過(guò)點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動(dòng)t秒時(shí), F的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出: S與a之間的函數(shù)關(guān)系式
(3)若點(diǎn)M在直線OP上,在平面內(nèi)是否存在一點(diǎn)Q,使以A,P,M,Q為頂點(diǎn)的四邊形為矩形且滿足矩形兩邊AP:PM之比為1: 若存在直接寫出Q點(diǎn)坐標(biāo)。若不存在請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,,點(diǎn)為上的動(dòng)點(diǎn),且.
(1)求的長(zhǎng)度;
(2)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,弦AD的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)E,問(wèn)ADAE的值是否變化?若不變,請(qǐng)求出ADAE的值;若變化,請(qǐng)說(shuō)明理由.
(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,過(guò)A點(diǎn)作AH⊥BD,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com