【題目】如圖,在⊙O中,分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過(guò)圓心,若⊙O的半徑為4,則四邊形ABCD的面積是( 。
A.8B.C.32D.
【答案】B
【解析】
過(guò)O作OH⊥AB交⊙O于E,延長(zhǎng)EO交CD于G,交⊙O于F,連接OA,OB,OD,根據(jù)平行線的性質(zhì)得到EF⊥CD,根據(jù)折疊的性質(zhì)得到OH=OA,進(jìn)而推出△AOD是等邊三角形,得到D,O,B三點(diǎn)共線,且BD為⊙O的直徑,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四邊形ABCD是矩形,于是得到結(jié)論.
過(guò)O作OH⊥AB交⊙O于E,延長(zhǎng)EO交CD于G,交⊙O于F,連接OA,OB,OD.
∵AB∥CD,∴EF⊥CD.
∵分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過(guò)圓心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等邊三角形.
∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三點(diǎn)共線,且BD為⊙O的直徑,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四邊形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四邊形ABCD的面積是16.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為美化中心城區(qū)環(huán)境,政府計(jì)劃在長(zhǎng)為30米,寬為20米的矩形場(chǎng)地上修建公園.其中要留出寬度相等的三條小路,且兩條與平行,另一條與平行,其余部分建成花圃.
(1)若花圃總面積為448平方米,求小路寬為多少米?
(2)已知某園林公司修建小路的造價(jià)(元)和修建花圃的造價(jià)(元)與修建面積(平方米)之間的函數(shù)關(guān)系分別為和.若要求小路寬度不少于2米且不超過(guò)4米,求小路寬為多少米時(shí)修建小路和花圃的總造價(jià)最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西特產(chǎn)專(zhuān)賣(mài)店銷(xiāo)售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低3元,則平均每天的銷(xiāo)售可增加30千克,若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利2090元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過(guò)點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時(shí),求的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(發(fā)現(xiàn))在解一元二次方程的時(shí)候,發(fā)現(xiàn)有一類(lèi)形如x2+(m+n)x+mn=0的方程,其常數(shù)項(xiàng)是兩個(gè)因數(shù)的積,而它的一次項(xiàng)系數(shù)恰好是這兩個(gè)因數(shù)的和,則我們可以把它轉(zhuǎn)化成x2+(m+n)x+mn=(m+x)(m+n)=0
(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可轉(zhuǎn)化為(x+2)(x+3)=0,即x+2=0或x+3=0,進(jìn)而可求解.
(歸納)若x2+px+q=(x+m)(x+n),則p= q= ;
(應(yīng)用)
(1)運(yùn)用上述方法解方程x2+6x+8=0;
(2)結(jié)合上述材料,并根據(jù)“兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù)“,求出一元二次不等式x2﹣2x﹣3>0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)停止,連接,以長(zhǎng)為直徑作.
(1)若,求的半徑;
(2)當(dāng)與相切時(shí),求的面積;
(3)連接,在整個(gè)運(yùn)動(dòng)過(guò)程中,的面積是否為定值,如果是,請(qǐng)直接寫(xiě)出面積的定值,如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,若干個(gè)半徑為2個(gè)單位長(zhǎng)度,圓心角為60°的扇形組成一條連續(xù)的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右上下起伏運(yùn)動(dòng),點(diǎn)在直線上的速度為每秒2個(gè)單位長(zhǎng)度,點(diǎn)在弧線上的速度為每秒個(gè)單位長(zhǎng)度,則第2018秒時(shí),點(diǎn)P的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙、丁從筆試、面試兩個(gè)方面進(jìn)行量化考核.甲、乙、丙、丁兩項(xiàng)得分如下表:(單位:分)
甲 | 乙 | 丙 | 丁 | |
筆試 | ||||
面試 |
(1)這名選手筆試成績(jī)的中位數(shù)是____________分,面試的眾數(shù)是_____________分;
(2)該公司規(guī)定:筆試、面試分別按,的比例計(jì)總分,請(qǐng)比較甲、乙的總分的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知點(diǎn)C周?chē)?/span>200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.
(1)MN是否穿過(guò)原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com