【題目】在去年的創(chuàng)建全國文明城市活動中,抱著我為文明瑞安出一份力的想法,小華就公眾對在餐廳吸煙的態(tài)度進(jìn)行了隨機(jī)抽樣調(diào)查,主要有四種態(tài)度:A、顧客出面制止;B、勸說進(jìn)吸煙室;C、餐廳老板出面制止;D、無所謂.他將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中的信息回答下列問題:
(1)這次抽樣的公眾有__________人;
(2)請將統(tǒng)計圖①補(bǔ)充完整;
(3)在統(tǒng)計圖②中,“無所謂”部分所對應(yīng)的圓心角是多少度?
(4)若瑞安全市人口有120萬人,估計贊成“餐廳老板出面制止”的有多少萬人?
【答案】(1)200; (2)(圖略); (3);(4)36萬.
【解析】
(1)根據(jù)題意可得:A類的有20人,占10%;即可求得總?cè)藬?shù);
(2)進(jìn)而可求得C類的人數(shù),據(jù)此可補(bǔ)全條形圖;
(3)根據(jù)扇形圖中,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360°的比,可求得,“無所謂”部分所對應(yīng)的圓心角度數(shù);
(4)用樣本估計總體,可估計贊成的人數(shù).
(1)∵A類的有20人,占10%,
∴故總?cè)藬?shù)為20÷10%=200人;
(2)由(1)的結(jié)論可求得C類的人數(shù)為2002010110=60人,條形統(tǒng)計圖如圖所示;
(3)“無所謂”部分有10人,占總?cè)藬?shù)的,所對應(yīng)的圓心角度數(shù)為×360°=18°;
(4)由條形圖可得:C類的人數(shù)為60人,占總數(shù)的,則城區(qū)人口有120萬人,估計贊成“餐廳老板出面制止”的有120×=36萬
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)畫出該二次函數(shù)的圖象;
(2)連接AC、CD、BD,求ABCD的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場一種商品的進(jìn)價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個小正方形和2個小長方形(即圖中陰影部分),將剩余部分折成一個有蓋的長方體盒子,
設(shè)剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計)
(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)
(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以邊長為20cm的正三角形紙板的各頂點(diǎn)為端點(diǎn),在各邊上分別截取4cm長的六條線段,過截得的六個端點(diǎn)作所在邊的垂線,形成三個有兩個直角的四邊形。把它們沿圖中虛線剪掉,用剩下的紙板折成一個底為正三角形的無蓋柱形盒子,則它的容積為多少cm( )
A. 124B. 144C. 110D. 94
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在矩形ABCD中,AB=6cm,BC=8cm,對角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿AD方向向終點(diǎn)D勻速運(yùn)動,速度為cm/s;同時,點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向向終點(diǎn)C勻速運(yùn)動,速度為1cm/s;當(dāng)一個點(diǎn)停止運(yùn)動時,另一個點(diǎn)也停止運(yùn)動.連接PO并延長,交BC于點(diǎn)E,過點(diǎn)Q作QF//AC,交BD于點(diǎn)F.設(shè)運(yùn)動時間為t(s),解答下列問題:
(1)當(dāng)t為何值時,△AOP是等腰三角形?
(2)設(shè)五邊形OECQF的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動過程中,是否存在某一時刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AC=8.點(diǎn)E與點(diǎn)B在AC的同側(cè),且AE⊥AC.
(1)如圖1,點(diǎn)E不與點(diǎn)A重合,連結(jié)CE交AB于點(diǎn)P.設(shè)AE=x,AP=y,求y關(guān)于x的函數(shù)解析式;
(2)是否存在點(diǎn)E,使△PAE與△ABC相似,若存在,求AE的長;若不存在,說明理由;
(3)如圖2,過點(diǎn)B作BD⊥AE,垂足為D.將以點(diǎn)E為圓心,ED為半徑的圓記為⊙E.若點(diǎn)C到⊙E上點(diǎn)的距離的最小值為8,求⊙E的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共1000萬元,如果平均每月增長率為,則由題意列方程應(yīng)為____________________________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E,F分別為邊AD,BC上的一個動點(diǎn),連接EF,以EF為對稱軸折疊四邊形CDEF,得到四邊形MNFE,點(diǎn)D,C的對應(yīng)點(diǎn)分別為M,N,當(dāng)點(diǎn)N恰好落在AB的三等分點(diǎn)時,CF的長為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com