如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx-7的圖象交x軸于A,B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)C為拋物線的頂點(diǎn),且A,C兩點(diǎn)的橫坐標(biāo)分別為1和4.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求二次函數(shù)的函數(shù)表達(dá)式;
(3)在(2)的拋物線上,是否存在點(diǎn)P,使得∠BAP=45°?若存在,求出點(diǎn)P的坐標(biāo)及此時(shí)△ABP的面積;若不存在,請說明理由.
(1)因?yàn)锳,C兩點(diǎn)的橫坐標(biāo)分別為1,4,
所以點(diǎn)A(1,0).(1分)
又點(diǎn)A,B關(guān)于對(duì)稱軸x=4對(duì)稱,點(diǎn)B(7,0).(2分)

(2)因?yàn)槎魏瘮?shù)y=ax2+bx-7的圖象經(jīng)過點(diǎn)A(1,0),B(7,0).
所以
a+b-7=0
49a+7b-7=0
(4分)
解得:
a=-1
b=8
(6分).
所以二次函數(shù)的表達(dá)式為y=-x2+8x-7.(7分)

(3)假設(shè)拋物線上存在點(diǎn)P(x,y),使得∠BAP=45°(8分)
①當(dāng)點(diǎn)P在x軸上方時(shí)有x-1=y,
∴x-1=-x2+8x-7,
即x2-7x+6=0.
解得:x=6或x=1(不合題意舍去)
∴y=-62+8×6-7=5.
∴點(diǎn)P為(6,5).(9分)
此時(shí),S△ABP=
1
2
×(7-1)×5=
30
2
=15(10分).
②當(dāng)點(diǎn)P在x軸的下方時(shí),有x-1=-y.
∴x-1=x2-8x+7,
解得:x=8或x=1(不合題意舍去)
∴y=-82+8×8-7=-7.
∴點(diǎn)P為(8,-7).(11分)
此時(shí),S△ABP=
1
2
×(7-1)×7=
42
2
=21(12分).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點(diǎn)為A(0,1),B(2,0),O(0,0),將此三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A′B′O.
(1)一拋物線經(jīng)過點(diǎn)A′、B′、B,求該拋物線的解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標(biāo);若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線y=
1
4
x2+bx+c
經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.
(1)求B點(diǎn)坐標(biāo);
(2)求證:ME是⊙P的切線;
(3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),
①求△ACQ周長的最小值;
②若FQ=t,S△ACQ=S,直接寫出S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-2,-1),與x軸有兩個(gè)交點(diǎn)且交點(diǎn)間的距離是2,則這個(gè)拋物線的解析式為y=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c與y軸的交點(diǎn)為C,頂點(diǎn)為M,直線CM的解析式y(tǒng)=-x+2并且線段CM的長為2
2

(1)求拋物線的解析式;
(2)設(shè)拋物線與x軸有兩個(gè)交點(diǎn)A(x1,0)、B(x2,0),且點(diǎn)A在B的左側(cè),求線段AB的長;
(3)若以AB為直徑作⊙N,請你判斷直線CM與⊙N的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2-2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且|OC|=3|OA|
(1)求拋物線的函數(shù)表達(dá)式;
(2)直接寫出直線BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以O(shè)D為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動(dòng)過程中,s是否存在最大值?如果存在,直接寫出這個(gè)最大值;如果不存在,請說明理由.
(4)如圖2,點(diǎn)P(1,k)在直線BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請直接寫出M點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖長為2的線段PQ在x的正半軸上,從P、Q作x軸的垂線與拋物線y=x2交于點(diǎn)P′、Q′.
(1)已知P的坐標(biāo)為(k,0),求直線OP′的函數(shù)解析式;
(2)若直線OP′把梯形P′PQQ′的面積二等分,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2-
3
2
x-9
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC.
(1)求AB和OC的長;
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合),過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D.設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

利民商店經(jīng)銷甲、乙兩種商品.現(xiàn)有如下信息:

請根據(jù)以上信息,解答下列問題:
(1)甲、乙兩種商品的進(jìn)貨單價(jià)各多少元?
(2)該商店平均每天賣出甲商品500件和乙商品300件.經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價(jià)分別每降0.1元,這兩種商品每天可各多銷售100件.為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價(jià)都下降m元.在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案