【題目】如圖,小明想測山高和索道的長度.他在B處仰望山頂A,測得仰角∠B=31°,再往山的方向(水平方向)前進80 m至索道口C處,沿索道方向仰望山頂,測得仰角∠ACE=39°.
(1)求這座山的高度(小明的身高忽略不計);
(2)求索道AC的長(結(jié)果精確到0.1 m).
(參考數(shù)據(jù):tan31°≈,sin31°≈,tan39°≈,sin39°≈)
【答案】(1)山的高度為180米;(2)索道AC長約為282.9米.
【解析】
試題(1)通過作垂線構(gòu)造直角三角形,把已知角放到直角三角形中,設(shè)出未知數(shù)x,用x代數(shù)式表示出BD、CD,利用線段之差列出方程;
(2)在Rt△ACD中利用sin39°,由AD求出AC.
試題解析:(1)過點A作AD⊥BE于D,
設(shè)山AD的高度為x米,
在Rt△ABD中,
∵∠ADB=90°,tan31°= ,
∴BD=≈=x,
在Rt△ACD中,
∵∠ADC=90°,tan39°= ,
∴CD==≈=x,
∵BC=BD﹣CD,
∴=80,
解得:x=180,
即山的高度為180米;
(2)在Rt△ACD中,∠ADC=90°,
sin39°=,
∴AC== ≈282.9(m),
答:索道AC長約為282.9米.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+(b﹣)x+c=0(a≠0)的兩根之和( )
A. 大于0 B. 等于0 C. 小于0 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是y軸正半軸上的一動點,過點P作AB∥x軸,分別交反比例函數(shù) (x<0)與(x>0)的圖象于點A,B,連接OA,OB,則以下結(jié)論:①AP=2BP;②∠AOP=2∠BOP;③△AOB的面積為定值;④△AOB是等腰三角形,其中一定正確的有( 。﹤.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x(元) | 3000 | 3200 | 3500 | 4000 |
y(輛) | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,求按照表格呈現(xiàn)的規(guī)律,每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù)(輛) | ________ | 未租出的車輛數(shù)(輛) | ________ |
租出每輛車的月收益(元) | ________ | 所有未租出的車輛每月的維護費(元) | ________ |
(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB⊥BD,sinA=,將ABCD放置在平面直角坐標系中,且AD⊥x軸,點D的橫坐標為1,點C的縱坐標為3,恰有一條雙曲線y=(k>0)同時經(jīng)過B、D兩點,則點B的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了對一棵傾斜的古杉樹AB進行保護,需測量其長度.如圖,在地面上選取一點C,測得∠ACB=45°,AC=21m,∠BAC=53°,求這顆古杉樹AB的長度.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,小剛同學按如下步驟作圖:
(1)以B為圓心,BC長為半徑畫弧,交AB于點E
(2)分別以點C.E為圓心,大于CE的長為半徑畫弧,兩弧在△ABC內(nèi)相交于點P
(3)連接BP,并延長交AC于點D
(4)連接DE
根據(jù)以上作圖步驟,有下列結(jié)論:①BD平分∠ABC; ②AD+DE = AC;③點P與點D關(guān)于直線CE對稱; ④△BCD與△BED關(guān)于直線BD對稱.
其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)I是△ABC的內(nèi)心,O是△ABC的外心,∠A=80°,則∠BIC=________,∠BOC=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com