如圖,在平行四邊形ABCD中(AB≠BC),直線EF經(jīng)過其對(duì)角線的交點(diǎn)O,且分別交AD、BC于點(diǎn)M、N,交BA、DC的延長線于點(diǎn)E、F,
(1)求證:△AOE≌△COF;
(2)若AM:DM=2:3,△ONC的面積為2cm2,求△AEM的面積.

【答案】分析:(1)由四邊形ABCD是平行四邊形,即可得AB∥CD,OA=OC,由平行線的性質(zhì),可得∠E=∠F,然后由AAS即可判定△AOE≌△COF;
(2)由△AOE≌△COF,可得OE=OF,易證得△AOM≌△CON,△AEM∽△DFM,即可得OM=ON,EM:FM=AM:DM=2:3,即可得EM:OM=4,又由△ONC的面積為2cm2,根據(jù)等高三角形的面積比等于對(duì)應(yīng)底的比,即可求得△AEM的面積.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,OA=OC,
∴∠E=∠F,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS);

(2)解:∵AB∥CD,
∴△AEM∽△DFM,
∴EM:FM=AM:DM=2:3,
∵△AOE≌△COF,
∴OE=OF,
∵AD∥BC,
∴∠AMO=∠CNO,
在△AOM和△CON中,

∴△AOM≌△CON(AAS),
∴OM=ON,
即EM=FN,
設(shè)EM=2x,F(xiàn)M=3x,則FN=2x,OM=ON=MN=(FM-FN)=x,
∴EM:OM=2x:x=4,
∵S△ONC=2cm2,
∴S△OAM=2cm2
∴S△AEM=4S△ONC=4×2=8(cm2).
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行四邊形的性質(zhì)以及三角形面積的求解方法.此題難度較大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案