【題目】平面直角坐標(biāo)系中,點(diǎn)、、,、分別在直線軸上.,,,都是等腰直角三角形,如果,則點(diǎn)的橫坐標(biāo)是_________

【答案】766

【解析】

利用待定系數(shù)法可得A1A2、A3的坐標(biāo),進(jìn)而得出各點(diǎn)的坐標(biāo)的規(guī)律.

解:因?yàn)槿切味际堑妊苯侨切危栽O(shè)A1m,m),則有m=m+,解得m=1,
A11,1),
設(shè)A22+n,n),則n=n+2+,
解得n=2,
A24,2),
設(shè)A36+a,a),則有a=6+a+
解得a=4,
A310,4),
由此發(fā)現(xiàn)點(diǎn)An的縱坐標(biāo)為2n-1,又∵點(diǎn)An在直線上,
∴點(diǎn)An的橫坐標(biāo)是3×2n-1-2,

n=9, An的橫坐標(biāo)是 -2=766.

故答案為:766

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BFEF與對角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF

2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在坐標(biāo)軸上,A,B兩點(diǎn)關(guān)于y軸對稱,點(diǎn)Cy軸正半軸上一個(gè)動(dòng)點(diǎn),AD是角平分線.

1)如圖1,若∠ACB90°,直接寫出線段ABCD,AC之間數(shù)量關(guān)系;

2)如圖2,若ABAC+BD,求∠ACB的度數(shù);

3)如圖2,若∠ACB100°,求證:ABAD+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是等邊三角形,

如圖1,點(diǎn)EBC上一點(diǎn),點(diǎn)FAC上一點(diǎn),且,連接AE,BF交于點(diǎn)G,求的度數(shù);

如圖2,點(diǎn)MBC延長線上一點(diǎn),,MN的外角平分線于點(diǎn)N,求的值;

如圖3,過點(diǎn)A于點(diǎn)D,點(diǎn)P是直線AD上一點(diǎn),以CP為邊,在CP的下方作等邊,連DQ,則DQ的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點(diǎn)A20)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針方向以1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針方向以2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2019次相遇地點(diǎn)的坐標(biāo)是( 。

A. 1,﹣1B. 20C. (﹣1,1D. (﹣1,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,AB=7,EF=3,則BC長為( )

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】穿越青海境內(nèi)的蘭新高速鐵路正在加緊施工.某工程隊(duì)承包了一段全長1957米的隧道工程,甲、乙兩個(gè)班組分別從南北兩端同時(shí)掘進(jìn),已知甲組比乙組每天多掘進(jìn)0.5米,經(jīng)過6天施工,甲、乙兩組共掘進(jìn)57米.

(1)求甲乙兩班組平均每天各掘進(jìn)多少米?

(2)為加快工程進(jìn)度,通過改進(jìn)施工技術(shù),在剩余的工程中,甲組平均每天比原來多掘進(jìn)0.3米,乙組平均每天比原來多掘進(jìn)0.2米.按此施工進(jìn)度,能夠比原來少用多少天完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.

(1)求證:AE=BF.
(2)連接GB,EF,求證:GB∥EF.
(3)若AE=1,EB=3,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(12)、B(3,1)、C(2,﹣1)

(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1;

(2)寫出A1、B1、C1的坐標(biāo);

(3)求△A1B1C1的面積.

查看答案和解析>>

同步練習(xí)冊答案