【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線y=a(xh) +k的關(guān)聯(lián)直線為y=a(xh)+k.

例如:拋物線y=2(x+1) 3的關(guān)聯(lián)直線為y=2(x+1)3,即y=2x1.

(1)如圖,對(duì)于拋物線y=(x1) +3.

①該拋物線的頂點(diǎn)坐標(biāo)為___,關(guān)聯(lián)直線為___,該拋物線與其關(guān)聯(lián)直線的交點(diǎn)坐標(biāo)為______

②點(diǎn)P是拋物線y=(x1) +3上一點(diǎn),過(guò)點(diǎn)P的直線PQ垂直于x,交拋物線y=(x1) +3的關(guān)聯(lián)直線于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,線段PQ的長(zhǎng)度為d(d>0),求當(dāng)dm的增大而減小時(shí),dm之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍。

(2)頂點(diǎn)在第一象限的拋物線y=a(x1) +4a與其關(guān)聯(lián)直線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C,直線ABx軸交于點(diǎn)D,連結(jié)AC、BC.

①求△BCD的面積(用含a的代數(shù)式表示).

②當(dāng)△ABC為鈍角三角形時(shí),直接寫(xiě)出a的取值范圍。

【答案】1)①(1,3),y=x+4,(1,3)(2,2);②當(dāng)m<1,d=m3m+2; m<2時(shí),d=m+3m2;;2)①9a;0<a<a>1.

【解析】

1)①利用二次函數(shù)的性質(zhì)和新定義得到拋物線的頂點(diǎn)坐標(biāo)和關(guān)聯(lián)直線解析式;然后解方程組 得該拋物線與其關(guān)聯(lián)直線的交點(diǎn)坐標(biāo);

②設(shè)Pm,-m+2m+2),則Qm,-m+4),如圖1,利用dm的增大而減小得到m<11<m<2,當(dāng)m<1時(shí),用m表示s得到d=m-3m+2;當(dāng)1<m<2時(shí),利用m表示d得到d=-m+3m-2,根據(jù)二次函數(shù)的性質(zhì)得當(dāng)m≥ ,dm的增大而減小,所以≤m<2時(shí),d=-m+3m-2;

2)①先確定拋物線y=-ax-1+4a的關(guān)聯(lián)直線為y=-ax+5a,再解方程組

A14a),B2,3a),接著解方程-ax-1+4a=0C-1,0),解方程-ax+5a=0D5,0),然后利用三角形面積公式求解;

②利用兩點(diǎn)間的距離公式得到AC=2+16aBC=3+9a,AB=1+a,討論:當(dāng)AC+AB<BC,∠BAC為鈍角,即2+16a+1+a<3+9a;當(dāng)BC+AB<AC,∠BAC為鈍角,即3+9a+1+a<2+16a,然后分別解不等式即可得到a的范圍.

(1)①拋物線的頂點(diǎn)坐標(biāo)為(1,3),關(guān)聯(lián)直線為y=(x1)+3=x+4,

解方程組 ,

所以該拋物線與其關(guān)聯(lián)直線的交點(diǎn)坐標(biāo)為(1,3)(2,2);

故答案為(1,3),y=x+4,(1,3)(2,2)

②設(shè)P(m,m+2m+2)Q(m,m+4),如圖1

dm的增大而減小,

m<11<m<2,

當(dāng)m<1時(shí),d=m+4(m+2m+2)=m3m+2;

當(dāng)1<m<2時(shí),d=m+2m+2(m+4)=m+3m2,當(dāng)m,dm的增大而減小,

綜上所述,當(dāng)m<1,d=m3m+2; m<2時(shí),d=m+3m2

(2)①拋物線y=a(x1) +4a的關(guān)聯(lián)直線為y=a(x1)+4a=ax+5a,

解方程組

A(1,4a),B(2,3a),

當(dāng)y=0時(shí),a(x1) +4a=0,解得x =3,x =1,C(1,0),

當(dāng)y=0時(shí),ax+5a=0,解得x=5,D(5,0),

SBCD=×6×3a=9a;

AC=2+16a,BC=3+9a,AB=1+a,

當(dāng)AC+AB<BC,BAC為鈍角,2+16a+1+a<3+9a,解得a< ;

當(dāng)BC+AB<AC,BAC為鈍角,3+9a+1+a<2+16a,解得a>1,

綜上所述,a的取值范圍為0<a<a>1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,按下列要求畫(huà)圖或填空;

1)畫(huà)一條線段AB使它的另一端點(diǎn)B落在格點(diǎn)上(即小正方形的頂點(diǎn)),且AB=2;

2)以(1)中的AB為邊畫(huà)一個(gè)等腰△ABC,使點(diǎn)C落在格點(diǎn)上,且另兩邊的長(zhǎng)都是無(wú)理數(shù);

3)△ABC的周長(zhǎng)為      ,面積為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按下圖方式擺放餐桌和椅子,

11張長(zhǎng)方形餐桌可坐4人,2張長(zhǎng)方形餐桌拼在一起可坐______人.

2)按照上圖的方式繼續(xù)排列餐桌,完成下表.

桌子張數(shù)

3

4

5

n

可坐人數(shù)

______

______

______

______

3)一家餐廳有40張這樣的長(zhǎng)方形餐桌,某用餐單位要求餐廳按照上圖方式,每8張長(zhǎng)方形餐桌拼成1張大桌子,則該餐廳此時(shí)能容納多少人用餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①、圖②、圖③均是4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1.

(1)在圖①、圖②中,以格點(diǎn)為頂點(diǎn),線段AB為一邊,分別畫(huà)一個(gè)平行四邊形和菱形,并直接寫(xiě)出它們的面積.(要求兩個(gè)四邊形不全等)

(2)在圖③中,以點(diǎn)A為頂點(diǎn),另外三個(gè)頂點(diǎn)也在格點(diǎn)上,畫(huà)一個(gè)面積最大的正方形,并直接寫(xiě)出它的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張正方形紙片剪成四張大小一樣的小正方形紙片,然后將其中一張正方形紙片再按同樣方法剪成四張小正方形紙片,再將其中一張剪成四張小正方形紙片,如此進(jìn)行下去.

1)填表:

剪的次數(shù)

1

2

3

4

5

紙片張數(shù)

4

7

2)如果剪了100次,共剪出多少?gòu)埣埰?/span>

3)如果剪了次,共剪出多少?gòu)埣埰?/span>

4)能否剪若干次后共得到2019張紙片?若能,請(qǐng)直接寫(xiě)出相應(yīng)剪的次數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)A、B、P分別在兩坐標(biāo)軸上,∠APB=60°,PB=m,PA=2m,以點(diǎn)P為圓心、PB為半徑作⊙P,作∠OBP的平分線分別交⊙P、OPC、D,連接AC.

(1)求證:直線AB⊙P的切線.

(2)設(shè)△ACD的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.

(3)如圖2,當(dāng)m=2時(shí),把點(diǎn)C向右平移一個(gè)單位得到點(diǎn)T,過(guò)O、T兩點(diǎn)作⊙Qx軸、y軸于E、F兩點(diǎn),若M、N分別為兩弧的中點(diǎn),作MG⊥EF,NH⊥EF,垂足為G、H,試求MG+NH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象頂點(diǎn)在軸上,且,與一次函數(shù)的圖象交于軸上一點(diǎn)和另一交點(diǎn).

求拋物線的解析式;

點(diǎn)為線段上一點(diǎn),過(guò)點(diǎn)軸,垂足為,交拋物線于點(diǎn),請(qǐng)求出線段的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,點(diǎn)P是對(duì)角線AC所在直線上的動(dòng)點(diǎn),點(diǎn)EDC邊所在直線上,且隨著點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),PE=PD總成立。

(1)如圖(1),當(dāng)點(diǎn)P在對(duì)角線AC上時(shí),請(qǐng)你通過(guò)測(cè)量、觀察,猜想PEPB有怎樣的關(guān)系?(直接寫(xiě)出結(jié)論不必證明);

(2)如圖(2),當(dāng)點(diǎn)P運(yùn)動(dòng)到CA的延長(zhǎng)線上時(shí),(1)中猜想的結(jié)論是否成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由;

(3)如圖(3),當(dāng)點(diǎn)P運(yùn)動(dòng)到CA的反向延長(zhǎng)線上時(shí),請(qǐng)你利用圖(3)畫(huà)出滿足條件的圖形,并判斷此時(shí)PEPB有怎樣的關(guān)系?(直接寫(xiě)出結(jié)論不必證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案