【題目】下面三個命題: ①若 是方程組 的解,則a+b=1或a+b=0;
②函數(shù)y=﹣2x2+4x+1通過配方可化為y=﹣2(x﹣1)2+3;
③最小角等于50°的三角形是銳角三角形,
其中正確命題的序號為

【答案】②③
【解析】解:①把 代入 ,得 , 如果a=2,那么b=1,a+b=3;
如果a=﹣2,那么b=﹣7,a+b=﹣9.
故命題①是假命題;
②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命題②是真命題;
③最小角等于50°的三角形,最大角不大于80°,一定是銳角三角形,故命題③是真命題.
所以正確命題的序號為②③.
所以答案是②③.
【考點精析】利用命題與定理對題目進行判斷即可得到答案,需要熟知我們把題設、結(jié)論正好相反的兩個命題叫做互逆命題.如果把其中一個叫做原命題,那么另一個叫做它的逆命題;經(jīng)過證明被確認正確的命題叫做定理.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表:

x

1

2

3

4

5

y

0

﹣3

﹣6

﹣6

﹣3

從上表可知,下列說法中正確的有(
=6;②函數(shù)y=ax2+bx+c的最小值為﹣6;③拋物線的對稱軸是x= ;④方程ax2+bx+c=0有兩個正整數(shù)解.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉(zhuǎn)180°,點D的對應點為C,點A的對應點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現(xiàn)有下列結(jié)論: ①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1∥l2 , l1、l2之間的距離為8,點P到直線l1的距離為6,點Q到直線l2的距離為4,PQ=4 ,在直線l1上有一動點A,直線l2上有一動點B,滿足AB⊥l2 , 且PA+AB+BQ最小,此時PA+BQ=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y= 圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣ >0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;
(2)設BD與CE相交于點O,點M,N分別為線段BO和CO的中點,當△ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,BC=12,矩形DEFG的頂點位于△ABC的邊上,設EF=x,S四邊形DEFG=y.

(1)填空:自變量x的取值范圍是
(2)求出y與x的函數(shù)表達式;
(3)請描述y隨x的變化而變化的情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C為某公園的三個景點,景點A和景點B之間有一條筆直的小路,現(xiàn)要在小路上建一個涼亭P,使景點B、景點C到?jīng)鐾的距離之和等于景點B到景點A的距離,請用直尺和圓規(guī)在所給的圖中作出點P.(不寫作法和證明,只保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在距離鐵軌200米的B處,觀察由南寧開往百色的“和諧號”動車,當動車車頭在A處時,恰好位于B處的北偏東60°方向上;10秒鐘后,動車車頭到達C處,恰好位于B處的西北方向上,則這時段動車的平均速度是( )米/秒.

A.20( +1)
B.20( ﹣1)
C.200
D.300

查看答案和解析>>

同步練習冊答案