【題目】如圖某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:每購買500元商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針上對(duì)準(zhǔn)500、20、100、50、10的區(qū)域,顧客就可以分別獲得500元、200元、100元、50元、10元的購物券一張。(轉(zhuǎn)盤等分成20份)
(1)小華購物450元,他獲得購物券的概率是多少?
(2)小麗購物600元,那么她獲得100元以上(包括100元)券的概率是多少?
【答案】(1)0(2)
【解析】
(1)由于每購買500元商品,才能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),所以小華購物450元,不能獲得轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),故獲得購物券的概率為0;
(2)找到100元及以上的份數(shù)占總份數(shù)的多少即為獲得100元以上(包括100元)購物券的概率.
解:(1)∵450<500,
∴小華購物450元,不能獲得轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),
∴小華獲得購物券的概率為0;
(2)小麗購物600元,能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).
她獲得100元以上(包括100元)購物券的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是反比例函數(shù)y= 的圖象和一次函數(shù)y=ax+b的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出不等式ax+b﹣ <0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,以AD為邊作正方形ADEF,連結(jié)CF,CE.
(1)求證:△ABD≌△ACF;
(2)如果BD=AC,求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)A作AE∥BD,過點(diǎn)D作ED∥AC,兩線相交于點(diǎn)E.
(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點(diǎn)F.若BE⊥ED于點(diǎn)E,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究
小聰將命題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰?shù)奶骄糠椒ㄊ菍?duì)∠B分為“直角、鈍角、銳角”三種情況進(jìn)行探究.
第一種情況:當(dāng)∠B 是直角時(shí),如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B 是銳角時(shí),如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點(diǎn)D,使DF=AC,畫出符合條件的點(diǎn)D,則△ABC和△DEF的關(guān)系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當(dāng)∠B是鈍角時(shí),如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點(diǎn)C作AB邊的垂線交AB延長(zhǎng)線于點(diǎn)M;同理過點(diǎn)F作DE邊的垂線交DE延長(zhǎng)線于N,根據(jù)“ASA”,可以知道△CBM≌△FEN,請(qǐng)補(bǔ)全圖形,進(jìn)而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在AD邊上,點(diǎn)F在AD的延長(zhǎng)線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)當(dāng)點(diǎn)D在什么位置時(shí),四邊形ADCE是矩形,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com