【題目】圖①、圖②均是6×6的正方形網(wǎng)格,每個小正方形的邊長為1,小正方形的頂點稱為格點,點A、B、C、D均在格點上.用直尺在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫畫法.
(1)在圖①中以線段AB為腰畫一個等腰三角形ABM,畫出的△ABM的面積是 .
(2)在圖②中以線段CD為邊畫一個四邊形CDEF,使∠FCD+∠EDC=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點D是邊BC上一動點(不與B、C重合),,DE交AC于點E,且.下列結(jié)論:①∽;②當(dāng)時,與全等;③為直角三角形時,BD等于8或.其中正確的有__________.(選填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在BC邊上,連接AE,∠DAE的平分線AG與CD邊交于點G,與BC的延長線交于點F.設(shè)=λ(λ>0).
(1)若AB=2,λ=1,求線段CF的長.
(2)連接EG,若EG⊥AF,
①求證:點G為CD邊的中點.
②求λ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過A (0,3),B (4,3)兩點,與x軸交于點E,F,以AB為邊作矩形ABCD,其中CD邊經(jīng)過拋物線的項點M,點P是拋物線上一動點(點P不與點A,B重合),過點P作y軸的平行線1與直線AB交于點G,與直線BD交于點H,連接AF交直線BD于點N.
(1)求該拋物線的解析式以及頂點M的坐標(biāo);
(2)當(dāng)線段PH=2GH時,求點P的坐標(biāo);
(3)在拋物線上是否存在點P,使得以點P,E,N,F為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=3.
(1)求反比例函數(shù)的解析式;
(2)求cos∠OAB的值;
(3)求經(jīng)過C、D兩點的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6.動點P從點A出發(fā),沿AB以每秒5個單位長度的速度向終點B運動.當(dāng)點P不與點A重合時,過點P作PD⊥AC于點D、PE∥AC,過點D作DE∥AB,DE與PE交于點E.設(shè)點P的運動時間為t秒.
(1)線段AD的長為 .(用含t的代數(shù)式表示).
(2)當(dāng)點E落在BC邊上時,求t的值.
(3)設(shè)△DPE與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關(guān)系式.
(4)若線段PE的中點為Q,當(dāng)點Q落在△ABC一邊垂直平分線上時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對九年一班50名學(xué)生進(jìn)行長跑項目的測試,根據(jù)測試成績制作了兩個統(tǒng)計圖.
請根據(jù)相關(guān)信息,解答下列問題:
(1)本次測試的學(xué)生中,得3分的學(xué)生有________人,得4分的學(xué)生有________人;
(2)求這50個數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會吉祥物“冰墩墩”以熊貓為原型進(jìn)行設(shè)計創(chuàng)作,北京冬殘奧會吉祥物“雪容融”則以中國標(biāo)志性符號的燈籠為創(chuàng)意進(jìn)行設(shè)計創(chuàng)作“冰墩墩”和“雪容融”是一個非常完美的搭:配和組合,是中國文化和奧林匹克精神又一次完美的結(jié)合莉莉有“冰墩墩”和“雪容融”的紀(jì)念郵票各2張(如圖),這4張郵票背面完全相同,莉莉想給好友小婷和小華各送一張紀(jì)念郵票,她先讓小婷從這4張郵票中隨機抽取一張,然后,再讓小華從剩下的3張中隨機抽取一張.
(1)小婷抽到“冰墩墩”的紀(jì)念郵票的概率是__________.
(2)利用樹狀圖或列表法求小婷和小華均抽到“雪容融”的紀(jì)念郵票的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com