【題目】如圖,拋物線與軸相交于兩點(點位于點的左側),與軸相交于點,是拋物線的頂點,直線是拋物線的對稱軸,且點的坐標為.
(1)求拋物線的解析式.
(2)已知為線段上一個動點,過點作軸于點.若的面積為.
①求與之間的函數關系式,并寫出自變量的取值范圍;
②當取得最值時,求點的坐標.
(3)在(2)的條件下,在線段上是否存在點,使為等腰三角形?如果存在,請求出點的坐標;如果不存在,請說明理由.
【答案】(1);(2)①;②當時,取得最大值,此時;(3)存在,點的坐標為或.
【解析】
(1)點C坐標代入解析式可求c的值,由對稱軸可求b的值,即可求解;
(2)①先求出點M,點A,點B的坐標,利用待定系數法可求BM解析式,由三角形的面積公式可求解;
②利用二次函數的性質可求解;
(3)分三種情況討論,利用兩點距離公式列出方程可求解.
(1)拋物線的對稱軸為直線.
又拋物線與軸的交點為,
拋物線的解析式為.
(2)①頂點.
設直線的解析式為.
將代入,
得解得
直線的解析式為.
軸且,
的面積.
點在線段上,且,
,
故與之間的函數關系式為.
②,
當時,取得最大值;
當時,沒有最小值.
綜上,當時,取得最大值,此時
(3)存在.
當時,
,
,
解得(舍去)或,此時.
當時,
解得(舍去)或,此時.
當時,
,
,
解得或,均不符合題意,舍去.
綜上所訴,存在點使為等腰三角形,點的坐標為或.
科目:初中數學 來源: 題型:
【題目】某快遞公司甲、乙兩名快遞員7月上旬10天里派送快遞,乙比甲晚工作一段時間,工作期間快遞員甲因事停工3天,各自的工作效率一定,他們各自的工作量(件)隨工作時間(天)變化的圖像如圖所示.則有下列說法:①甲工人的工作效率為60件/天;②乙工人每天比甲工人少送10件;③甲工人一共送420件;④乙比甲少工作2天.其中正確的個數是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分別以AB、AC為對稱軸翻折變換,D點的對稱點為E、F,延長EB、FC相交于G點.
(1)求證:四邊形AEGF是正方形;
(2)求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在數軸上點表示數,點表示數,點表示數是最大的負整數,且滿足.
(1)a=________,b=________,c=________.
(2)若將數軸折疊,使得點與點重合,則點與數________表示的點重合;
(3)點開始在數軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和3個單位長度的速度向右運動,假設秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,則________,________.(用含的代數式表示)
(4)的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了豐富學生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結合統(tǒng)計圖中的信息解決下列問題:
(1)這次抽查的學生人數是多少人?
(2)將條形統(tǒng)計圖補充完整.
(3)求扇形統(tǒng)計圖中課程所對應扇形的圓心角的度數.
(4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,其中端點、均在小正方形的頂點上.
(1)在圖中畫出平行四邊形,點和點均在小正方形的頂點上,且平行四邊形的面積為12;
(2)在圖中畫出以為腰的等腰直角,且點在小正方形的頂點上;
(3)連接,直接寫出的正切值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.
已知:直線及直線外一點.
求作:,使得.
作法:如圖,
①在直線上取一點,作射線,以點為圓心,長為半徑畫弧,交的延長線于點;
②在直線上取一點(不與點重合),作射線,以點為圓心,長為半徑畫弧,交的延長線于點;
③作直線.
所以直線就是所求作的直線.
根據小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵_______,_______,
∴(____________)(填推理的依據).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了提高學生閱讀能力,我區(qū)某校倡議八年級學生利用雙休日加強課外閱讀,為了解同學們閱讀的情況,學校隨機抽查了部分同學周末閱讀時間,并且得到數據繪制了不完整的統(tǒng)計圖,根據圖中信息回答下列問題:
(1)將條形統(tǒng)計圖補充完整;被調查的學生周末閱讀時間眾數是多少小時,中位數是多少小時;
(2)計算被調查學生閱讀時間的平均數;
(3)該校八年級共有500人,試估計周末閱讀時間不低于1.5小時的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點D和E,作直線DE交AB于點F,交AC于點G,連接CF,以點C為圓心,以CF的長為半徑畫弧,交AC于點H.若∠A=30°,BC=2,則AH的長是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com