【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)O在AC上,OA=2,以OA為半徑的⊙O交AB于點(diǎn)D,AC于G,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)求證:直線DE是⊙O的切線;
(2)求線段DE的長(zhǎng);
(3)求線段AD的長(zhǎng).
【答案】(1)證明見解析(2)DE=4.75(3)2.4
【解析】試題分析:(1)連接OD,欲證DE是切線,只要證明OD⊥DE即可;
(2)連接OE,設(shè)DE=BE=x,CE=8﹣x,利用勾股定理求解即可;
(3)連結(jié)BG,DG,根據(jù)三角形的面積的不同求法,然后根據(jù)勾股定理求解.
試題解析:(1)連接OD,
∵EF垂直平分BD,∴EB=ED,
∴∠B=∠EDB,
∵OA=OD,∴∠ODA=∠A,
∵∠C=90°,∴∠A+∠B=90°,
∴∠EDB+∠ODA=90°,∴∠ODE=90°,
∴OD⊥DE于D,∴DE是⊙O的切線.
(2)連接OE,
設(shè)DE=BE=x,CE=8﹣x,
∵OE2=DE2+OD2=EC2+OC2,
∴42+(8﹣x)2=22+x2,
解得x=4.75,
∴DE=4.75.
(3)連結(jié)BG,DG.
∵AG是直徑,∴GD⊥AB
由S△ABG=AG·BC=AB·GD可得:4×8=10×GD,
∴GD=3.2
∴AD==2.4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次為A1,A2,A3,A4,…表示,則頂點(diǎn)A2018的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小亮上山游玩,小顆乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小亮行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍,小顆在小亮出發(fā)后50分才乘上纜車,纜車的平均速度為180米/分,設(shè)小亮出發(fā)x分后行走的路程為y米。圖中的折線表示小亮在整個(gè)行走過程中y隨x的變化關(guān)系.
(1)小亮行走的總路程是_________米,他途中休息了___________分;
(2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;
(3)當(dāng)小穎到達(dá)纜車終點(diǎn)時(shí),小亮離纜車終點(diǎn)的路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育老師從七年級(jí)學(xué)生中抽取40名參加全校的健身操比賽.這些學(xué)生身高(單位:cm)的最大值為175,最小值為155.若取組距為3,則可以分成____組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
①、同位角相等;②、如果兩個(gè)角的和是 180 度,那么這兩個(gè)角是鄰補(bǔ)角;
③、在同一平面內(nèi),平行于同一條直線的兩條直線互相平行;
④、在同一平面內(nèi),垂直于同一條直線的兩條直線互相垂直. 其中是真命題的個(gè)數(shù)有( )個(gè)
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(﹣1,2)是由點(diǎn)Q(0,﹣1)經(jīng)過( )而得到的.
A.先向右平移1個(gè)長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度
B.先向左平移1個(gè)長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度
C.先向上平移3個(gè)長(zhǎng)度,再向左平移1個(gè)單位長(zhǎng)度
D.先向下平移1個(gè)長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的面積是60,請(qǐng)完成下列問題:
(1)如圖1,若AD是△ABC的BC邊上的中線,則△ABD的面積________△ACD的面積(填“>”“<”或“=”)
(2)如圖2,若CD、BE分別是△ABC的AB、AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO , 同理:S△CEO=S△AEO , 設(shè)S△ADO=x,S△CEO=y,則S△BDO=x,S△AEO=y由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為: , 解得,通過解這個(gè)方程組可得四邊形ADOE的面積為________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com