【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=BC.延長(zhǎng)DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC,CE.
(1)求證:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的長(zhǎng).
【答案】
(1)證明:∵AB為⊙O的直徑,
∴∠ACB=90°,
∴AC⊥BC,
又∵DC=CB,
∴AD=AB,
∴∠B=∠D
(2)解:設(shè)BC=x,則AC=x﹣7,
在Rt△ABC中,AC2+BC2=AB2,
即(x﹣7)2+x2=132,
解得:x1=12,x2=﹣5(舍去),
∵∠B=∠E,∠B=∠D,
∴∠D=∠E,
∴CD=CE,
∵CD=CB,
∴CE=CB=12
【解析】(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質(zhì),可證得AD=AB,即可得:∠B=∠D;(2)首先設(shè)BC=x,則AC=x﹣7,由在Rt△ABC中,AC2+BC2=AB2 , 可得方程:(x﹣7)2+x2=132 , 解此方程即可求得CB的長(zhǎng),繼而求得CE的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的有( )
①Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)為5;
②有一個(gè)內(nèi)角等于其他兩個(gè)內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱(chēng)其為“趙爽弦圖”(如圖),圖由弦圖變化得到,它是由作個(gè)全等的直角三角形拼接而成,記圖中正方形,正方形,正方形的面積分別為、、,若,則的值是( )
A. 5 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,有張寫(xiě)有實(shí)數(shù)的卡片,它們的背面都相同,現(xiàn)將它們背面朝上洗勻后如圖②擺放,從中任意翻開(kāi)兩張都是無(wú)理數(shù)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)研究課上,老師出示如圖1所示的長(zhǎng)方形紙條,,,然后在紙條上任意畫(huà)一條截線段,將紙片沿折疊,與交于點(diǎn),得到,如圖2所示:
(1)若,求的大;
(2)改變折痕位置,判斷的形狀,并說(shuō)明理由;
(3)愛(ài)動(dòng)腦筋的小明在研究的面積時(shí),發(fā)現(xiàn)邊上的高始終是個(gè)不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出的面積最小值為,求的大;
(4)小明繼續(xù)動(dòng)手操作,發(fā)現(xiàn)了面積的最大值,請(qǐng)你求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=x+m(m≠0)與反比例函數(shù) 的圖象在同一平面直角坐標(biāo)系中是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面的四個(gè)三角形中,不能由如圖的三角形經(jīng)過(guò)旋轉(zhuǎn)或平移得到的是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com