【題目】【發(fā)現(xiàn)】:如圖1,在正三角形ABC中,在AB,AC邊上分別取點(diǎn)M,N,BM=AN,連接BN,CM,相交于點(diǎn)O,求∠α
易得:△ABN≌△BCN,則∠1=∠2
∵∠α是△BOC的外角,∴∠α=∠2+∠3
∴∠α=∠1+∠3=∠ABC=60°

【推廣】:在正n邊形中,對(duì)相鄰的兩邊實(shí)施同樣的操作…
(1)如圖2,在正四邊形ABCD中,在AB,AD邊上分別取點(diǎn)M,N,連接BN,CM,可確定∠α=°;

(2)如圖3,在正五邊形ABCDE中,在AB,AD邊上分別取點(diǎn)M,N,連接BN,CM,可確定∠α=°;

(3)判斷:∠α可以等于160°嗎?如果可以,求出對(duì)應(yīng)的邊數(shù)n,若不可以,說明理由.

【答案】
(1)90
(2)108
(3)解:∠α可以等于160°,

理由:由于上述操作發(fā)現(xiàn)的結(jié)論可知,正n邊形中的∠α=正n邊形的內(nèi)角的度數(shù),

假設(shè)存在正n邊形使得∠α=160°,則(n﹣2)180°=160°n,

解得:n=18,

∴存在正n邊形使得∠α=160°,

此時(shí),該正n邊形為正十八邊形.


【解析】解:(1)∵四邊形ABCD是正方形,

∴AB=BC,∠A=∠CBM=90°,

在△ABN與△BCM中, ,

∴△ABN≌△BCM,

∴∠1=∠2,

∵∠α是△BOC的外角,

∴∠α=∠2+∠3

∴∠α=∠1+∠3=∠ABC=90°;

所以答案是:90;(2)∵四邊形ABCD是正五邊形,

∴AB=BC,∠A=∠CBM=108°,

在△ABN與△BCM中,

∴△ABN≌△BCM,

∴∠1=∠2,

∵∠α是△BOC的外角,

∴∠α=∠2+∠3,

∴∠α=∠1+∠3=∠ABC=108°;

所以答案是:108;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛快車與一輛慢車分別從甲、乙兩地同時(shí)出發(fā),沿同一路線相向 而行,抵達(dá)對(duì)方出發(fā)地時(shí)停止運(yùn)動(dòng).設(shè)慢車行駛xh時(shí),兩車之間的路程為ykm.圖中折線ABCD表示y與x的函數(shù)關(guān)系,根據(jù)圖像,解決以下問題:

(1)慢車的速度為多少km/h,快車的速度為多少km/h;

(2)解釋圖中點(diǎn)C的實(shí)際意義,求出點(diǎn)C的坐標(biāo);

(3)當(dāng)x取何值時(shí),y=500 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的逆命題,并判斷這對(duì)命題的真假.

(1)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;

(2)若a=b,則a2=b2;

(3)若∠α+∠β=180°,則∠α與∠β至少有一個(gè)是鈍角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小俊在A處利用高為1.5米的測(cè)角儀AB測(cè)得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測(cè)得樓頂E的仰角為60°,求樓EF的高度.( =1.732,結(jié)果精確到0.1米)
DEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:將ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,
(1)求證:△ABF≌△ECF;
(2)若AE=AD,連接AC、BE,求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)PAD 邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線AC上,且AE=CF.求證:

(1)DE=BF;

(2)四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),頂點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)是M′.

(1)求拋物線的解析式;
(2)若直線AM′與此拋物線的另一個(gè)交點(diǎn)為C,求△CAB的面積;
(3)是否存在過A,B兩點(diǎn)的拋物線,其頂點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,使得四邊形APBQ為正方形?若存在,求出此拋物線的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)對(duì)2016年微信用戶的職業(yè)頒布進(jìn)行了隨機(jī)抽樣調(diào)查(職業(yè)說明:A:黨政機(jī)關(guān)、軍隊(duì),B:事業(yè)單位,C:企業(yè),D:自由職業(yè)及人體戶,E:學(xué)生,F(xiàn):其他),圖1和圖2是根據(jù)調(diào)查數(shù)據(jù)繪制而成的不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)該機(jī)構(gòu)共抽查微信用戶人;
(2)在圖1中,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在圖2中,“D”用戶所對(duì)應(yīng)扇形的圓心角度數(shù)為度;
(4)2016年微信用戶約有7.5億人,估計(jì)“E”用戶大約有億人.

查看答案和解析>>

同步練習(xí)冊(cè)答案