【題目】某班準備選一名學(xué)生參加數(shù)學(xué)史知識競賽,現(xiàn)統(tǒng)計了兩名選手本學(xué)期的五次測試 成績:甲:83,80,90,87, 85; 乙:78,92,82,89,84.

(1)請根據(jù)上面的數(shù)據(jù)完成下表:

極差

平均數(shù)

方差

10

________

________

_________

85

24.8

(2)請你推選出一名參賽選手,并用所學(xué)的統(tǒng)計知識說明理由.

【答案】(1)85;11.6;14(2)見解析

【解析】

利用最大值減去最小值可得極差,求出n個數(shù)的和,然后除以n可得平均數(shù);利用方差公式S2=計算出方差.

解:(1)乙的極差=92-78=14,

甲的平均數(shù)=(83+80+90+87+ 85)÷5=85,

甲的方差==11.6,

(2)選擇甲參加比賽理由兩者的平均數(shù)一樣,兩者水平相當,但是甲的極差比乙的極差小,甲的方差也比乙的方差小,則甲比乙穩(wěn)定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線x軸于A(-2,0),B3,0)兩點,交y軸于點C0,6).

1)寫出a,b,c的值;

2)連接BC,點P為第一象限拋物線上一點,過點AADx軸,過點PPDBC于交直線AD于點D,設(shè)點P的橫坐標為t,AD長為h

①求ht的函數(shù)關(guān)系式和h的最大值(請求出自變量t的取值范圍);

②過第二象限點DDEABBC于點E,若DP=CE,時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校對九年級學(xué)生進行隨機抽樣調(diào)查,被抽到的學(xué)生從物理、化學(xué)、生物、地理、歷史和政治這六科中選出自己最喜歡的科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制了兩幅不同的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)被抽查的學(xué)生共有多少人?求出地理學(xué)科所在扇形的圓心角;

2)將折線統(tǒng)計圖補充完整;

3)若該校九年級學(xué)生約2000人請你估算喜歡物理學(xué)科的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,CE是外角平分線,點D在AC上,連結(jié)BD并延長與CE交于點E.

(1)求證:ABD∽△CED.

(2)若AB=6,AD=2CD,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°sinA,BC8,點DAB的中點,過點BCD的垂線,垂足為點E.

(1)求線段CD的長;

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=﹣1的拋物線yax2+bx+ca≠0)與x軸相交于A,B兩點.

1)若點A的坐標為(﹣4,0),求點B的坐標.

2)若已知a1,點A的坐標為(﹣3,0),C為拋物線與y軸的交點.

①若點P在拋物線上,且SPOC4SBOC,求點P的坐標;

②設(shè)點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種成本為20元的商品,經(jīng)調(diào)研,當該商品每件售價為30元時,每天可銷售200件:當每件的售價每增加1元,每天的銷量將減少5件.

求銷量與售價之間的函數(shù)表達式;

如果每天的銷量不低于150件,那么,當售價為多少元時,每天獲取的利潤最大,最大利潤是多少?

該商店老板熱心公益事業(yè),決定從每天的銷售利潤中捐出100元給希望工程,為保證捐款后每天剩余利潤不低于2900元,請直接寫出該商品售價的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”.

概念理解:在“矩形、菱形和正方形”這三種特殊四邊形中,不一定是“等鄰角四邊形”的是______

問題探究:如圖,在等鄰角四邊形ABCD中,∠B=C,AB=3BC=9,P為線段BC上一動點(不包含端點B,C),Q為直線CD上一動點,連結(jié)PA,PQ,在P,Q的運動過程中始終滿足∠APQ=B,當CQ達到最大時,試求此時BP的長.

應(yīng)用拓展:在以60°為等角的等鄰角四邊形ABCD中,∠D=90°,若AB=3AD=,試求等鄰角四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,PBA延長線上一點,CGO的弦PCAABCCGAB,垂足為D

1)求證:PCO的切線;

2)求證:;

3)過點AAEPCO于點E,交CD于點F,連接BE,若sinP,CF5,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案