【題目】閱讀材料,回答下列問題:

數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題。例如,兩個(gè)有理數(shù)在數(shù)軸上對應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對值表示;

在數(shù)軸上,有理數(shù)31對應(yīng)的兩點(diǎn)之間的距離為|31|=2

在數(shù)軸上,有理數(shù)52對應(yīng)的兩點(diǎn)之間的距離為|5(2)|=7;

在數(shù)軸上,有理數(shù)23對應(yīng)的兩點(diǎn)之間的距離為|23|=5;

在數(shù)軸上,有理數(shù)85對應(yīng)的兩點(diǎn)之間的距離為|8(5)|=3……

如圖1,在數(shù)軸上有理數(shù)a對應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對應(yīng)的點(diǎn)為點(diǎn)B,AB兩點(diǎn)之間的距離表示為|ab||ba|,記為|AB|=|ab|=|ba|.

(1)數(shù)軸上有理數(shù)105對應(yīng)的兩點(diǎn)之間的距離等于___;數(shù)軸上有理數(shù)x5對應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為___;若數(shù)軸上有理數(shù)x1對應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于___;

(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為2,動(dòng)點(diǎn)P表示的數(shù)為x.

①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x4|=___;若|x+2|+|x4|═10,則x=___;

②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x2|+|x4|的最小值等于___.

【答案】15;|x+5|;13;(2)①6;64;②8.

【解析】

1)根據(jù)絕對值的定義:數(shù)軸上有理數(shù)-10-5對應(yīng)的兩點(diǎn)之間的距離等于5;數(shù)軸上有理數(shù)x-5對應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為|x+5|;若數(shù)軸上有理數(shù)x-1對應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于1-3

2)①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x-4|=6;若|x+2|+|x-4|═10,則x=6-4;

|x+2|+|x|+|x-2|+|x-4|的最小值,這個(gè)最小值=4--2=6

(1)根據(jù)絕對值的定義:

數(shù)軸上有理數(shù)105對應(yīng)的兩點(diǎn)之間的距離等于5;

數(shù)軸上有理數(shù)x5對應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為|x+5|

A,B之間的距離|AB|=2,則x等于13,

(2)①若點(diǎn)P在點(diǎn)MN之間,則|x+2|+|x4|=6

|x+2|+|x4|═10,則x=64;

|x+2|+|x|+|x2|+|x4|的最小值,

x4,2,0,4之間距離和最小,這個(gè)最小值=4(4)=8.

故答案為:5,|x+5|,13;6,64,8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑CDAB,垂足為P,AB=2AC=

1A的度數(shù)

2求弧CBD的長

3求弓形CBD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),過,垂足為,點(diǎn)在邊上,且與點(diǎn)關(guān)于直線對稱,連接.

1)若平分,求線的長;

2能否為等腰三角形?若能,請確定點(diǎn)的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:(11218+715

2×(﹣7)﹣(﹣13)×(﹣);

3;

4)(-3×-÷-1);

5-19×8

6)﹣12×[(﹣23+(﹣32]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)EA FCE,且交BC于點(diǎn)F

(1)求證:ABF≌△CDE

(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AD=BCAB=DC,試判斷∠A與∠B的關(guān)系,下面是小穎同學(xué)的推導(dǎo)過程,你能說明小穎的每一步的理由嗎?

解:連接BD

在△ABD與△CDB

AD=BC(______)

AB=CD(______)

BD=DB(______)

∴△ABD≌△CDB(______)

∴∠ADB=CBD(______)

ADBC(______)

∴∠A+ABC=180°(______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,點(diǎn)E在邊CD上,且CD3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BGCG;③AG//CF;④SEFC.其中正確結(jié)論的是____________(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課堂探究性活動(dòng)蔚然成風(fēng)。張老師在課堂上設(shè)置一道習(xí)題:

(1)已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在BC上任一位置(如圖1所示)時(shí),探究PA2、PB2、PC2、PD2,之間的關(guān)系?直接寫出結(jié)論,不必證明;

當(dāng)P點(diǎn)在其它位置時(shí),請同學(xué)們分組探究:

(2)當(dāng)點(diǎn)P在矩形內(nèi)部,如圖2時(shí),探究PA2、PB2、PC2、PD2之間的數(shù)量關(guān)系,請你把探究出的結(jié)論寫出來,并給予證明。

(3)當(dāng)點(diǎn)P在矩形外部,如圖3時(shí),繼續(xù)探完P(guān)A2、PB2、PC2、PD2之間的數(shù)量關(guān)系,請你把探究出的結(jié)論直接寫出來,不必證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力.增強(qiáng)保護(hù)漢字的意識(shí),我區(qū)舉辦了“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)(人數(shù))

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

請結(jié)合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

同步練習(xí)冊答案