【題目】已知:如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長線上,sinB= ,∠CAD=30°.

(1)求證:AD是⊙O的切線;
(2)若OD⊥AB,BC=5,求AD的長.

【答案】
(1)

證明:連接OA,

∵sinB= ,

∴∠B=30°,

∠AOC=60°,

又∵OA=OC,

∴△AOC是等邊三角形,

∴∠OAC=60°,

∴∠OAD=60°+30°=90°,

∴AD是⊙O的切線;


(2)

解:∵OC⊥AB,OC是半徑,

∴BE=AE,

∴OD是AB的垂直平分線,

∴∠DAE=60°,∠D=30°,

在Rt△ACE中,AE=cos30°×AC=

∴在Rt△ADE中,AD=2AE=5


【解析】(1)連接OA,由于sinB= ,那么可求∠B=30°,利用圓周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等邊三角形,從而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切線;(2)由于OC⊥AB,OC是半徑,利用垂徑定理可知OC是AB的垂直平分線,那么CA=CB,而∠B=30°,則∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函數(shù)值可求AE,在Rt△ADE中利用30°的銳角所對(duì)的直角邊等于斜邊的一半,可求AD.
【考點(diǎn)精析】本題主要考查了圓周角定理的相關(guān)知識(shí)點(diǎn),需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)ABC,∠C=90°,AB=25cmBC=15cm,若動(dòng)點(diǎn)P從點(diǎn)C開始沿著CBAC的路徑運(yùn)動(dòng)且速度為每秒5cm,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t

1)點(diǎn)P運(yùn)動(dòng)2秒后ABP的面積;

2)如圖(2),當(dāng)t為何值時(shí),BP平分∠ABC

3)當(dāng)BCP為等腰三角形時(shí),直接寫出所有滿足條件t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)寧市五城同創(chuàng)活動(dòng)中,一項(xiàng)綠化工程由甲、乙兩工程隊(duì)承擔(dān).已知甲工程隊(duì)單獨(dú)完成這項(xiàng)工作需120天,甲工程隊(duì)單獨(dú)工作30天后,乙工程隊(duì)參與合做,兩隊(duì)又共同工作了36天完成.

1)求乙工程隊(duì)單獨(dú)完成這項(xiàng)工作需要多少天?

2)因工期的需要,將此項(xiàng)工程分成兩部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均為正整數(shù),且x<46,y<52,求甲、乙兩隊(duì)各做了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣ x+2與x軸,y軸分別交于B,C,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A,B,C,點(diǎn)A坐標(biāo)為(﹣1,0).

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,連接CD,點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn)(不與B,C重合),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),四邊形PCDB的面積最大?求出此時(shí)四邊形PCDB面積的最大值和點(diǎn)P坐標(biāo);
(3)在拋物線上的對(duì)稱軸上是否存在一點(diǎn)Q,使△QCD是以CD為腰的等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)ym<0)位于第二象限的圖像上的一個(gè)動(dòng)點(diǎn),過點(diǎn)AACx

軸于點(diǎn)C;M為是線段AC的中點(diǎn),過點(diǎn)MAC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、

D兩點(diǎn).順次連接AB、C、D.設(shè)點(diǎn)A的橫坐標(biāo)為n

(1)求點(diǎn)B的坐標(biāo)(用含有m、n的代數(shù)式表示);

(2)求證:四邊形ABCD是菱形;

(3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時(shí),求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與直線 交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)是2.點(diǎn)P在直線AB上方的拋物線上,過點(diǎn)P分別作PC∥y軸、PD∥x軸,與直線AB交于點(diǎn)C、D,以PC、PD為邊作矩形PCQD,設(shè)點(diǎn)Q的坐標(biāo)為(m,n).

(1)點(diǎn)A的坐標(biāo)是 , 點(diǎn)B的坐標(biāo)是;
(2)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)求m與n之間的函數(shù)關(guān)系式(不要求寫出自變量n的取值范圍);
(4)請(qǐng)直接寫出矩形PCQD的周長最大時(shí)n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)一班20名女生某次體育測試的成績統(tǒng)計(jì)如下:

成績(分)

60

70

80

90

100

人數(shù)(人)

1

5

x

y

2

(1)如果這20名女生體育成績的平均分?jǐn)?shù)是82分,求x、y的值;

(2)(1)的條件下,設(shè)20名學(xué)生測試成績的眾數(shù)是a,中位數(shù)是b,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.

(1)求證:CD為⊙O的切線;
(2)若CD=2AD,⊙O的直徑為20,求線段AC、AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用尺規(guī)作圖作△ABCAC上的高BH,作法如下:

分別以點(diǎn)DE為圓心,大于DE的長為半徑作弧,兩弧交于F;

作射線BF,交邊AC于點(diǎn)H;

B為圓心,BK長為半徑作弧,交直線AC于點(diǎn)DE;

取一點(diǎn)K,使KBAC的兩側(cè);

所以,BH就是所求作的高. 其中順序正確的作圖步驟是( 。

A. ①②③④ B. ④③②① C. ②④③① D. ④③①②

查看答案和解析>>

同步練習(xí)冊(cè)答案