【題目】已知如圖,四邊形ABCD的四個頂點的坐標(biāo)分別為A(0,0)、B(9,0)、C(7,5)、D(2,7).

(1)試計算四邊形ABCD的面積;

(2)若將該四邊形各頂點的橫坐標(biāo)都加2,縱坐標(biāo)都加3,其面積怎么變化?為什么?

【答案】(1)42(2)面積不變

【解析】試題分析:(1)本題需先對四邊形分解成三個圖形,再列出式子即可求出四邊形的面積.

(2)本題根據(jù)點的移動規(guī)律即可得出四邊形的面積不變.

試題解析:(1)四邊形ABCD的面積=SADE+S梯形CDEF+SCFB=7+×(5+7)×5+5=42;

(2)∵四邊形各頂點的橫坐標(biāo)都加2,縱坐標(biāo)都加3,相當(dāng)于把四邊形向右平移2個單位長度,再向上平移三個單位長度,

∴四邊形的面積不變.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點ODEAC,AEBD

求證:四邊形AODE是矩形;(2)若AB=6,BCD=120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若方程組 的解x,y滿足0<x+y<1,則k的取值范圍是(
A.﹣4<k<0
B.﹣1<k<0
C.0<k<8
D.k>﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏上午800從家里出發(fā),騎車去一家超市購物,然后從這家超市返回家中.小敏離家的路程y(米)和所經(jīng)過的時間x(分)之間的函數(shù)圖象如圖所示.請根據(jù)圖象回答下列問題:

1)小敏去超市途中的速度是多少?在超市逗留了多少時間?

2)小敏幾點幾分返回到家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)美麗河池 清潔鄉(xiāng)村 美化校園的號召,紅水河中學(xué)計劃在學(xué)校公共場所安裝溫馨提示牌和垃圾箱。已知,安裝5個溫馨提示牌和6個垃圾箱需730元,安裝7個溫馨提示牌和12個垃圾箱需1310元。

1)安裝1個溫馨提示牌和1個垃圾箱各需多少元?

2)安裝8個溫馨提示牌和15個垃圾箱共需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,A(a,0),C(b,2),過C作CBx軸,且滿足(a+b)2+=0.

(1)求三角形ABC的面積.

(2)若過B作BDAC交y軸于D,且AE,DE分別平分CAB,ODB,如圖2,求AED的度數(shù).

(3)在y軸上是否存在點P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算。
(1)解方程: +3=
(2)解不等式:2x﹣3≤ (x+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=15,AD=12.在進行如下操作時遇到了下面的幾個問題,請你幫助解決.

(1)將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2)求FB的長度;
(2)在(1)的條件下,小紅想用△EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請問哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計)請你通過計算說服小紅.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘巡邏艇航行至海面B處時,得知正北方向上距B處20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)

查看答案和解析>>

同步練習(xí)冊答案