【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是_____.
【答案】(4n+1,)
【解析】
試題首先根據(jù)△OA1B1是邊長(zhǎng)為2的等邊三角形,可得A1的坐標(biāo)為(1,),B1的坐標(biāo)為(2,0);然后根據(jù)中心對(duì)稱的性質(zhì),分別求出點(diǎn)A2、A3、A4的坐標(biāo)各是多少;最后總結(jié)出An的坐標(biāo)的規(guī)律,求出A2n+1的坐標(biāo)是多少即可.
解:∵△OA1B1是邊長(zhǎng)為2的等邊三角形,
∴A1的坐標(biāo)為(1,),B1的坐標(biāo)為(2,0),
∵△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,
∴點(diǎn)A2與點(diǎn)A1關(guān)于點(diǎn)B1成中心對(duì)稱,
∵2×2﹣1=3,2×0﹣=﹣,
∴點(diǎn)A2的坐標(biāo)是(3,﹣),
∵△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,
∴點(diǎn)A3與點(diǎn)A2關(guān)于點(diǎn)B2成中心對(duì)稱,
∵2×4﹣3=5,2×0﹣(﹣)=,
∴點(diǎn)A3的坐標(biāo)是(5,),
∵△B3A4B4與△B3A3B2關(guān)于點(diǎn)B3成中心對(duì)稱,
∴點(diǎn)A4與點(diǎn)A3關(guān)于點(diǎn)B3成中心對(duì)稱,
∵2×6﹣5=7,2×0﹣=﹣,
∴點(diǎn)A4的坐標(biāo)是(7,﹣),
…,
∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,
∴An的橫坐標(biāo)是2n﹣1,A2n+1的橫坐標(biāo)是2(2n+1)﹣1=4n+1,
∵當(dāng)n為奇數(shù)時(shí),An的縱坐標(biāo)是,當(dāng)n為偶數(shù)時(shí),An的縱坐標(biāo)是﹣,
∴頂點(diǎn)A2n+1的縱坐標(biāo)是,
∴△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是(4n+1,).
故答案為:(4n+1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在操場(chǎng)上做游戲,他發(fā)現(xiàn)地上有一個(gè)不規(guī)則的封閉圖形ABC.為了知道它的面積,他在封閉圖形內(nèi)劃出了一個(gè)半徑為1米的圓,在不遠(yuǎn)處向圖形內(nèi)擲石子,且記錄如下:
擲石子次數(shù)石子落在的區(qū)域ABC | 50次 | 150次 | 300次 |
石子落在圓內(nèi)(含圓上)的次數(shù)m | 14 | 43 | 93 |
石子落在陰影內(nèi)的次數(shù)n | 19 | 85 | 186 |
(1)隨著次數(shù)的增多,小明發(fā)現(xiàn)m與n的比值在一個(gè)常數(shù)k附近波動(dòng),請(qǐng)你寫出k的值.
(2)請(qǐng)利用學(xué)過(guò)的知識(shí)求出封閉圖形ABC的大致面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)畫出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;
(3)四邊形AA2C2C的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯(cuò)誤的是( 。
A. 圖象的對(duì)稱軸是直線x=﹣1 B. 當(dāng)x>﹣1時(shí),y隨x的增大而減小
C. 當(dāng)﹣3<x<1時(shí),y<0 D. 一元二次方程ax2+bx+c=0的兩個(gè)根是﹣3,1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),且A,B兩點(diǎn)的坐標(biāo)分別為(-2,0),(8,0),與y軸交于點(diǎn)C(0,-4),連接BC,以BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線L交拋物線于點(diǎn)Q,交BD于點(diǎn)M.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),試探究m為何值時(shí),四邊形CQMD是平行四邊形?
(3)位于第四象限內(nèi)的拋物線上是否存在點(diǎn)N,使得△BCN的面積最大?若存在,求出N點(diǎn)的坐標(biāo),及△BCN面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=,下列結(jié)論:① △APD≌△AEB;② EB⊥ED;③ 點(diǎn)B到直線AE的距離為; ④,其中正確結(jié)論的序號(hào)是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根、.
(1)求的取值范圍;
(2)求證:<0,<0;
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,雙曲線與直線都經(jīng)過(guò)點(diǎn).
(1)求與的值;
(2)此雙曲線又經(jīng)過(guò)點(diǎn),點(diǎn)是軸的負(fù)半軸上的一點(diǎn),且點(diǎn)到軸的距離是2 ,聯(lián)結(jié)、、,
①求的面積;
②點(diǎn)在軸上,為等腰三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(是常數(shù))
(1)求證:不論為何值,該函數(shù)圖象與軸一定有兩個(gè)公共點(diǎn)。
(2)若該函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,-2),則該函數(shù)圖象怎樣平移經(jīng)過(guò)原點(diǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com