【題目】如圖,在Rt△ABC 中,∠C=90°,∠B=30°,以點(diǎn) A 為圓心,任意長為半徑畫弧分別交 AB,AC 于點(diǎn)M N,再分別以 M,N 為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn) P,連接 AP 并延長交 BC 于點(diǎn)D,則下列說法中:①AD ∠BAC 的平分線;點(diǎn) D 在線段 AB 的垂直平分線上;③S△DAC:S△ABC=1:2,正確的序號(hào)是_____

【答案】①②

【解析】

據(jù)作圖的過程可以判定ADBAC的角平分線;

利用等角對(duì)等邊可以證得ADB的等腰三角形,由等腰三角形的三合一的性質(zhì)可以證明點(diǎn)DAB的垂直平分線上;

利用30度角所對(duì)的直角邊是斜邊的一半、三角形的面積計(jì)算公式來求兩個(gè)三角形的面積之比.

根據(jù)作圖的過程可知,ADBAC的平分線.
正確;
如圖,ABC中,C90°,B30°
∴∠CAB60°
ADBAC的平分線,
∴∠12CAB30°

∵∠1B30°,
ADBD

ABD為等腰三角形

點(diǎn)DAB的垂直平分線上.
正確;
③∵如圖,在直角ACD中,230°,
CDAD,
BCCDBDADADAD,

SDACACCDACAD
SABCACBCACADACAD,
SDACSABCACADACAD13
錯(cuò)誤.
故答案為:①②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作ADE,使AD=AEDAE=BAC,連接CE

1)如圖一,若ABC是等邊三角形,且AB=AC=2,點(diǎn)D在線段BC上,

①求證:∠BCE+BAC=180°;

②當(dāng)四邊形ADCE的周長取最小值時(shí),求BD的長.

2)若∠BAC60° ,當(dāng)點(diǎn)D射線BC上移動(dòng),則∠BCE和∠BAC 之間有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時(shí)接縫材料不計(jì))

若該廠購進(jìn)正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個(gè),恰好能將購進(jìn)的紙板全部用完;

該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時(shí),a的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下面兩個(gè)定理:

線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;

到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.

應(yīng)用上述定理進(jìn)行如下推理:

如圖,直線l是線段MN的垂直平分線.

點(diǎn)A在直線l,AM=AN.(  )

BM=BN,點(diǎn)B在直線l.(  )

CMCN,點(diǎn)C不在直線l.

這是如果點(diǎn)C在直線l,那么CM=CN, (  )

這與條件CMCN矛盾.

以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是 (  )

A. ②①① B. ②①②

C. ①②② D. ①②①

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算: +|3﹣ |﹣2sin60°+(2017﹣π)0+( 2
(2)解方程: + =1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC 中,AB=ACD、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ABE繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到△ACF,連接DF.下列結(jié)論中:①∠DAF=45° ②△≌△ AD平分∠EDF ;正確的有______________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191月份的月歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù)(如圖,如框出了10,1724),則這三個(gè)數(shù)的和可能的是( )

A. 21B. 27C. 50D. 75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把(sinα)2記作sin2α,根據(jù)圖1和圖2完成下列各題.

(1)sin2A1+cos2A1= , sin2A2+cos2A2= , sin2A3+cos2A3=;
(2)觀察上述等式猜想:在Rt△ABC中,∠C=90°,總有sin2A+cos2A=;
(3)如圖2,在Rt△ABC中證明(2)題中的猜想:
(4)已知在△ABC中,∠A+∠B=90°,且sinA= ,求cosA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a是長方形紙帶(提示:ADBC),將紙帶沿EF折疊成圖b,再沿GF折疊成圖c

1)若∠DEF20°,則圖b中∠EGB______,∠CFG______;

2)若∠DEF20°,則圖c中∠EFC______;

3)若∠DEFα,把圖c中∠EFCα表示為______;

4)若繼續(xù)按EF折疊成圖d,按此操作,最后一次折疊后恰好完全蓋住∠EFG,整個(gè)過程共折疊了9次,問圖a中∠DEF的度數(shù)是多少.

查看答案和解析>>

同步練習(xí)冊(cè)答案