【題目】如圖:△ABC和△ADE是等邊三角形,AD是BC邊上的中線.求證:BE=BD.
【答案】證明見解析.
【解析】試題分析:根據等邊三角形三線合一的性質可得AD為∠BAC的角平分線,根據等邊三角形各內角為60°即可求得∠BAE=∠BAD=30°,進而證明△ABE≌△ABD,得BE=BD.
試題解析:(方法1)證明:∵△ABC和△ADE都是等邊三角形
∴∠DAE=∠BAC=60°∴∠EAB=∠DAC
∵AE=AD,AB=AC
∴△ABE≌△ACD(SAS)
∴BE="CD"
∵AD是△ABC的中線
∴BD="CD"
∴BE=BD
(方法2)證明:∵△ABC是等邊三角形,
∴∠BAC=60°
∵AD為BC邊上的中線,
∴AD平分∠BAC.
即∠BAD=∠DAC=∠BAC=30°,
又∵△ADE為等邊三角形,
∴AE=AD=ED,且∠EAD=60°,
而∠BAD=30°,
∴∠EAB=∠EAD﹣∠BAD=30°.
∴∠EAB=∠BAD.
∴AB垂直平分DE,
∴BE=BD
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數的圖象與反比例函數在第一象限內的圖象交于點A,與x軸交于點B,線段OA=5,C為x軸正半軸上一點,且∠AOC=.
(1)求一次函數和反比例函數的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將拋物線y=6x2先向左平移2個單位,再向上平移3個單位后得到新的拋物線,則新拋物線解析式是( )
A.y=6(x﹣2)2+3
B.y=6(x+2)2+3
C.y=6(x﹣2)2﹣3
D.y=6(x+2)2﹣3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從標號分別為1,2,3,4,5的5張卡片中,隨機抽取1張,下列事件中,必然事件是( 。
A.該卡片標號小于6
B.該卡片標號大于6
C.該卡片標號是奇數
D.該卡片標號是3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與雙曲線交于A、B兩點,點B的坐標為(-4,-2),C為第一象限內雙曲線上一點,且點C在直線的上方.
(1)求雙曲線的函數解析式;(2)若△AOC的面積為6,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com