【題目】已知關(guān)于x的一元二次方程mx2﹣2x﹣1=0有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求m的取值范圍;
(2)當(dāng)x12+x22=﹣6x1x2時(shí),求m的值.
【答案】(1)m的取值范圍為m≥﹣1且m≠0;(2)m的值為1.
【解析】
(1)由二次項(xiàng)系數(shù)非零結(jié)合根的判別式△≥0,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍;
(2)由根與系數(shù)的關(guān)系可知x1+x2、x1x2,結(jié)合x12+x22=﹣6x1x2即可得出關(guān)于m的分式方程,解之并檢驗(yàn)后即可得出結(jié)論.
(1)∵關(guān)于x的一元二次方程mx2﹣2x﹣1=0有兩個(gè)實(shí)數(shù)根,∴,解得:m≥﹣1且m≠0,∴m的取值范圍為m≥﹣1且m≠0.
(2)∵關(guān)于x的一元二次方程mx2﹣2x﹣1=0有兩個(gè)實(shí)數(shù)根x1,x2,∴x1+x2,x1x2.
∵x12+x22=(x1+x2)2﹣2x1x2=﹣6x1x2,∴()2,解得:m=1,經(jīng)檢驗(yàn),m=1是分式方程的解.
∵m≥﹣1且m≠0,∴m的值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E在DC邊上,DE=4,EC=2,把線段AE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)E落在直線BC上的點(diǎn)F處,則FC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A(﹣1.0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和對(duì)稱軸.
(3)探究對(duì)稱軸上是否存在一點(diǎn)P,使得以點(diǎn)P、D、A為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)求出所有符合條件的P點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=3,BE=,求半圓和菱形ABFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組的6名同學(xué)在一次數(shù)學(xué)競賽中的成績分別是94分、98分、90分、94分、80分、74分,則下列結(jié)論正確的是( 。
A. 中位數(shù)是90分B. 眾數(shù)是94分
C. 平均分是91分D. 方差是20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣3,1)、B(m,3)兩點(diǎn),
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)寫出使一次函數(shù)的值大于反比例函數(shù)的x的取值范圍;
(3)連接AO、BO,求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(觀察發(fā)現(xiàn)):(1)如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點(diǎn)E在邊AB上,連接DE和BG,猜想線段DE與BG的數(shù)量關(guān)系和位置關(guān)系.(只要求寫出結(jié)論,不必說出理由)
(深入探究):(2)如圖2,將圖1中正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結(jié)論是否還成立?請(qǐng)根據(jù)圖2加以說明.
(拓展應(yīng)用):(3)如圖3,直線l上有兩個(gè)動(dòng)點(diǎn)A、B,直線l外有一點(diǎn)動(dòng)點(diǎn)Q,連接QA,QB,以線段AB為邊在l的另一側(cè)作正方形ABCD,連接QD.隨著動(dòng)點(diǎn)A、B的移動(dòng),線段QD的長也會(huì)發(fā)生變化,若QA,QB長分別為3,6保持不變,在變化過程中,線段QD的長是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過點(diǎn)A,點(diǎn)P是拋物線上點(diǎn)A、C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過點(diǎn)P作PF⊥BC于點(diǎn)F,點(diǎn)D、E的坐標(biāo)分別為(0,6),(﹣4,0),連接PD,PE,DE.
(1)求拋物線的解析式;
(2)小明探究點(diǎn)P的位置是發(fā)現(xiàn):當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)C重合時(shí),PD與PF的差為定值,進(jìn)而猜想:對(duì)于任意一點(diǎn)P,PD與PF的差為定值,請(qǐng)你判定該猜想是否正確,并說明理由;
(3)請(qǐng)直接寫出△PDE周長的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com