【題目】如圖,ABC中,∠ACB90°,ACBC,點(diǎn)GAC中點(diǎn),連結(jié)BG,CEBGF,交ABE,連接GE,點(diǎn)HAB中點(diǎn),連接FH.以下結(jié)論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB10,則BF4;(4FH平分∠BFE;(5SBGC3SCGE.其中正確結(jié)論的個(gè)數(shù)是(  )

A.1B.2C.3D.4

【答案】D

【解析】

如圖,作APACCE的延長(zhǎng)線于P,連接CH.構(gòu)造全等三角形,證明CAPBCGASA),EAGEAPSAS),即可判斷(2)(5)正確,利用相似三角形的判定與性質(zhì)可以證明(4)正確,解直角三角形可以判定(3)正確.

如圖,作APACCE的延長(zhǎng)線于P,連接CH

CEBG

∴∠CFB=ACB=90°

∵∠ACE+BCE=90°,∠CBG+BCE=90°

∴∠ACE=CBG

BGABC的中線,ABBC,

BG不是∠ACB的角平分線,

∴∠ABGCBG

∴∠ACEABG,故(1)錯(cuò)誤.

∵∠ACP=CBG,AC=BC,∠CAP=BCG=90°

CAPBCGASA),

CG=PA=AG,∠BGC=P

AG=AP,∠EAG=EAP=45°,AE=AE,

EAGEAPSAS),

∴∠AGE=P,

∴∠AGE=CGB,故(2)正確.

AB=10ABC是等腰直角三角形,

AC=BC=10,

AG=CG=5,

BG

CGCBCF

CF=2,

BF,故(3)正確.

CA=CB,∠ACB=90°,AH=HB

∴∠BCH=ACH=45°

∵∠CFB=CHB=90°,∠COF=BOH

∴△COF∽△BOH,

COOF=BOOH

∵∠COB=FOH,

∴△COB∽△FOH,

∴∠HFB=BCH=45°,

∴∠EFH=HFB=45°,

FH平分∠BFE,故(4)正確.

AG=GC

SCGE=SAEG

AEGAEP,

SAEG=SAEP

SGCESACP

CAPCBG,

SACP=SCBG,

SBGC=3SCGE.故(5)正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(4,3)、B(6,0)C(1,0)

(1) 請(qǐng)畫出ABC關(guān)于坐標(biāo)原點(diǎn)O的中心對(duì)稱圖形ABC,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo) ;

(2)若將點(diǎn)B繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,請(qǐng)直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B的坐標(biāo) ;

(3)請(qǐng)直接寫出:以A、BC為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的頂點(diǎn)、在反比例函數(shù)的圖象上,頂點(diǎn)、分別在軸、軸的正半軸上,再在其右側(cè)作正方形,頂點(diǎn)在反比例函數(shù)的圖象上,頂點(diǎn)軸的正半軸上,則點(diǎn)的坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC被平行光線照射,CD⊥AB于D,AB在投影面上.

(1)指出圖中AC的投影是什么?CD與BC的投影呢?

(2)探究:當(dāng)△ABC為直角三角形(∠ACB=90°)時(shí),易得AC2=AD·AB,此時(shí)有如下結(jié)論:直角三角形一直角邊的平方等于它在斜邊射影與斜邊的乘積,這一結(jié)論我們稱為射影定理.通過(guò)上述結(jié)論的推理,請(qǐng)證明以下兩個(gè)結(jié)論.

①BC2=BD·AB;②CD2=AD·BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,同時(shí)將點(diǎn)A(﹣1,0)、B30)向上平移2個(gè)單位長(zhǎng)度再向右平移1個(gè)單位長(zhǎng)度,分別得到A、B的對(duì)應(yīng)點(diǎn)CD.連接AC,BD

1)求點(diǎn)CD的坐標(biāo),并描出A、BC、D點(diǎn),求四邊形ABDC面積;

2)在坐標(biāo)軸上是否存在點(diǎn)P,連接PA、PC使SPACS四邊形ABCD?若存在,求點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB90°,CDABE,CDAB,DABC延長(zhǎng)線交于F

1)若AC12,∠ABC30°,求DE的長(zhǎng);

2)若BC2AC,求證:DAFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三角形(記作)在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是,,,先將向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到.

(1)在圖中畫出;

(2)點(diǎn),的坐標(biāo)分別為_(kāi)_____、______;

(3)若軸有一點(diǎn),使面積相等,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線lx軸和y軸于點(diǎn)A,B,反比例函數(shù)y=x0)的圖象于點(diǎn)C,過(guò)點(diǎn)Cy軸的平行線交x軸于點(diǎn)D,過(guò)點(diǎn)Bx軸的平行線交反比例函數(shù)y=-x0)的圖象于點(diǎn)E,則圖中陰影部分的總面積為______

查看答案和解析>>

同步練習(xí)冊(cè)答案