8.在平面直角坐標中,點A的坐標是(-3,4),若點A與點B關于原點對稱,則點B的坐標為(3,-4).

分析 關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).

解答 解:點A的坐標是(-3,4),若點A與點B關于原點對稱,則點B的坐標為(3,-4),
故答案為:(3,-4).

點評 本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

18.如圖,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直線l上,將△ABC繞點A順時針轉到位置①,可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉到位置②,可得到點P2,此時AP2=2+$\sqrt{3}$;將位置②的三角形繞點P2順時針旋轉到位置③,可得到點P3,此時AP3=3+$\sqrt{3}$;…,按此順序繼續(xù)旋轉,得到點P2016,則AP2016=( 。
A.2016+671$\sqrt{3}$B.2016+672$\sqrt{3}$C.2017+672$\sqrt{3}$D.2016+673$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.如圖,OB、OC是∠AOD的兩條射線,OM和ON分別是∠AOB和∠COD內部的一條射線,且∠AOD=α,∠MON=β.
(1)當∠AOM=∠BOM,∠DON=∠CON時,試用含α和β的代數(shù)式表示∠BOC;
(2)①當∠AOM=2∠BOM,∠DON=2∠CON時,∠BOC等于多少?(用含α和β的代數(shù)式表示)
②當∠AOM=3∠BOM,∠DON=3∠CON時,∠BOC等于多少?(用含α和β的代數(shù)式表示)
(3)根據(jù)上面的結果,請?zhí)羁眨寒敗螦OM=n∠BOM,∠DON=n∠CON時,∠BOC=$\frac{n+1}{n}$β-$\frac{1}{n}$α.(n是正整數(shù))(用含α和β的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.化簡$\frac{2x}{x-2}$+$\frac{x}{2-x}$的結果是( 。
A.xB.x-1C.$\frac{3x}{x-2}$D.$\frac{x}{x-2}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.已知拋物線y=$\frac{1}{2}$x2+mx-2m-2(m≥0)與x軸交于A、B兩點,點A在點B的左邊,與y軸交于點C
(1)當m=1時,求點A和點B的坐標
(2)拋物線上有一點D(-1,n),若△ACD的面積為5,求m的值
(3)P為拋物線上A、B之間一點(不包括A、B),PM⊥x軸于點M,求$\frac{AM•BM}{PM}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

13.若關于x的方程2x+a-4=0的解是x=2,則a的值等于( 。
A.-8B.0C.2D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.下面是一道尚未編完的應用題,請你補充完整,使列出的方程為2x+4(35-x)=94.
七年級一班組織了“我愛閱讀”讀書心得匯報評比活動,為了倡導同學們多讀書,讀好書,老師為所有參加比賽的同學都準備了獎品,獎品為兩種書簽,共35份,單價分別為2元和4元,共花費94元,則兩種書簽各多少份.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有1條對稱軸,非正方形的長方形有2條對稱軸,等邊三角形有3條對稱軸;
(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;
(3)小明希望構造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;
(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.已知,在Rt△ABC中,∠C=90°,AB=5,BC=3,則sinA的值是(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習冊答案