拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.
(1)將C(0,-3)代入y=ax2+bx+c,
得c=-3.
將c=-3,B(3,0)代入y=ax2+bx+c,
得9a+3b+c=0.(1)
∵直線x=1是對稱軸,
-
b
2a
=1
.(2)(2分)
將(2)代入(1)得
a=1,b=-2.
所以,二次函數(shù)得解析式是y=x2-2x-3.

(2)AC與對稱軸的交點(diǎn)P即為到B、C的距離之差最大的點(diǎn).
∵C點(diǎn)的坐標(biāo)為(0,-3),A點(diǎn)的坐標(biāo)為(-1,0),
∴直線AC的解析式是y=-3x-3,
又∵直線x=1是對稱軸,
∴點(diǎn)P的坐標(biāo)(1,-6).

(3)設(shè)M(x1,y)、N(x2,y),所求圓的半徑為r,
則x2-x1=2r,(1)
∵對稱軸為直線x=1,即
x1+x2
2
=1,
∴x2+x1=2.(2)
由(1)、(2)得:x2=r+1.(3)
將N(r+1,y)代入解析式y(tǒng)=x2-2x-3,
得y=(r+1)2-2(r+1)-3.
整理得:y=r2-4.
由所求圓與x軸相切,得到r=|y|,即r=±y,
當(dāng)y>0時,r2-r-4=0,
解得,r1=
1+
17
2
r2=
1-
17
2
(舍去),
當(dāng)y<0時,r2+r-4=0,
解得,r1=
-1+
17
2
,r2=
-1-
17
2
(舍去).
所以圓的半徑是
1+
17
2
-1+
17
2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知在直角梯形OABC中,ABOC,BC⊥x軸于點(diǎn)C,A(1,1)、B(3,1).動點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動過程中,是否存在某一時刻t,使得以C、P、Q為頂點(diǎn)的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點(diǎn)P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y1=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,對稱軸為直線x=1,且A、C兩點(diǎn)的坐標(biāo)分別為A(-1,0)、C(0,-3).
(1)求拋物線y1=ax2+bx+c和直線BC:y2=mx+n的解析式;
(2)當(dāng)y1•y2≥0時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-
1
2
x+b(b>0)
分別交x軸,y軸于A,B兩點(diǎn),以O(shè)A,OB為邊作矩形OACB,D為BC的中點(diǎn).以M(4,0),N(8,0)為斜邊端點(diǎn)作等腰直角三角形PMN,點(diǎn)P在第一象限,設(shè)矩形OACB與△PMN重疊部分的面積為S.
(1)求點(diǎn)P的坐標(biāo).
(2)若點(diǎn)P關(guān)于x軸的對稱點(diǎn)為P′,試求經(jīng)過M、N、P′三點(diǎn)的拋物線的解析式.
(3)當(dāng)b值由小到大變化時,求S與b的函數(shù)關(guān)系式.
(4)若在直線y=-
1
2
x+b(b>0)
上存在點(diǎn)Q,使∠OQM等于90°,請直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的對稱軸是直線x=2,頂點(diǎn)A的縱坐標(biāo)為1,點(diǎn)B(4,0)在此拋物線上.

(1)求此拋物線的解析式;
(2)若此拋物線對稱軸與x軸交點(diǎn)為C,點(diǎn)D(x,y)為拋物線上一動點(diǎn),過點(diǎn)D作直線y=2的垂線,垂足為E.
①用含y的代數(shù)式表示CD2,并猜想CD2與DE2之間的數(shù)量關(guān)系,請給出證明;
②在此拋物線上是否存在點(diǎn)D,使∠EDC=120°?如果存在,請直接寫出D點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=-
1
2
x+1
交坐標(biāo)軸于A、B點(diǎn),以線段AB為邊向上作正方形ABCD,過點(diǎn)A、D、C的拋物線與直線的另一個交點(diǎn)為E.
(1)求點(diǎn)C、D的坐標(biāo)
(2)求拋物線的解析式
(3)若拋物線與正方形沿射線AB下滑,直至點(diǎn)C落在x軸上時停止,求拋物線上C、E兩點(diǎn)間的拋物線所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y1=a(x+2)2-3與y2=
1
2
(x-3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時,y2-y1=4
④2AB=3AC.
其中正確結(jié)論是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,?ABCO的頂點(diǎn)O在原點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)C在第一象限.
(1)直接寫出點(diǎn)C的坐標(biāo);
(2)將?ABCO繞點(diǎn)O逆時針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點(diǎn)D與點(diǎn)O重合).FG與邊AB、x軸分別交于點(diǎn)Q、點(diǎn)P.設(shè)此時旋轉(zhuǎn)前后兩個平行四邊形重疊部分的面積為S0,求S0的值;
(3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動的過程中,設(shè)動點(diǎn)D的坐標(biāo)為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-
1
2
x2+4x+c的圖象經(jīng)過坐標(biāo)原點(diǎn),并且與函數(shù)y=
1
2
x的圖象交于O、A兩點(diǎn).
(1)求c的值;
(2)求A點(diǎn)的坐標(biāo);
(3)若一條平行于y軸的直線與線段OA交于點(diǎn)F,與這個二次函數(shù)的圖象交于點(diǎn)E,求線段EF的最大長度.

查看答案和解析>>

同步練習(xí)冊答案