14.多項(xiàng)式2a3+b2-ab3的次數(shù)是4.

分析 根據(jù)多項(xiàng)式的次數(shù)的定義進(jìn)行解答即可.

解答 解:多項(xiàng)式2a3+b2-ab3的次數(shù)是4,
故答案為:4

點(diǎn)評(píng) 本題考查了多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng).多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.隨著互聯(lián)網(wǎng)的發(fā)展,同學(xué)們的學(xué)習(xí)習(xí)慣也有了改變,一些在做題遇到困難時(shí),喜歡上網(wǎng)查找答案,針對(duì)這個(gè)問題,某校調(diào)查了部分學(xué)生對(duì)這種做法的意見(分為:贊成、無所謂、反對(duì)),并將調(diào)查結(jié)果繪制成圖1和圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將圖1補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖中持“反對(duì)”意見的學(xué)生所在扇形的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校1500名學(xué)生中有多少名學(xué)生持“無所謂”意見?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.某校為了了解本校九年級(jí)女生體育項(xiàng)目跳繩的訓(xùn)練情況,讓體育老師隨機(jī)抽查了該年級(jí)若干名女生,并嚴(yán)格地對(duì)她們進(jìn)行了1分鐘跳繩測試,同時(shí)統(tǒng)計(jì)每個(gè)人跳的個(gè)數(shù)(假設(shè)這個(gè)個(gè)數(shù)為x),現(xiàn)在我們將這些同學(xué)的測試結(jié)果分為四個(gè)等級(jí):優(yōu)秀(x≥180),良好(150≤x≤179),及格(135≤x≤149)和不及格(x≤134),并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,回答下列問題:
(1)本次共測試了50名女生,其中等級(jí)為“良好”的有20人;
(2)請(qǐng)計(jì)算等級(jí)為“及格”所在圓心角的度數(shù);
(3)若該年級(jí)有300名女生,請(qǐng)你估計(jì)該年級(jí)女生中1分鐘“跳繩”個(gè)數(shù)達(dá)到優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中,假命題的是( 。
A.分別有一個(gè)角是110°的兩個(gè)等腰三角形相似
B.如果兩個(gè)三角形相似,則他們的面積比等于相似比
C.若5x=8y,則$\frac{x}{y}$=$\frac{8}{5}$
D.有一個(gè)角相等的兩個(gè)菱形相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)算:
(1)|-4|-3×(-$\frac{2}{3}$)+(-3)
(2)32+(-1)2017÷$\frac{2}{5}$+(-2)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,正方形OEFG的一條邊OE在直線OD上,OG與CD交于點(diǎn)M,正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),OG′,OE′分別與CD,AD交于點(diǎn)P,Q.已知矩形長與寬的比值為2,則在旋轉(zhuǎn)過程中PM:DQ=( 。
A.1:3B.2:3C.1:2D.3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)分式$\frac{x+2}{x-1}$的值為0時(shí),字母x的取值應(yīng)為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,AB是⊙O的直徑,C,D是⊙O上兩點(diǎn),且$\widehat{BC}$=$\widehat{CD}$,過點(diǎn)C的直線CF⊥AD于點(diǎn)F,交AB的延長線于點(diǎn)E,連接AC.
(1)求證:EF是⊙O的切線;
(2)連接FO,若sinE=$\frac{1}{2}$,⊙O的半徑為r,請(qǐng)寫出求線段FO長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.下列判斷正確的是(填序號(hào))(2)(5).
(1)命題“兩條直線被第三條直線所截,同位角相等”是真命題.
(2)實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng).
(3)無理數(shù)是開方開不盡的數(shù).
(4)過一點(diǎn)可以而且只可以畫一條直線與已知直線平行.
(5)算術(shù)平方根等于本身的數(shù)是1和0.

查看答案和解析>>

同步練習(xí)冊答案