精英家教網 > 初中數學 > 題目詳情
如圖,已知平行四邊形ABCD,延長AD到E,使DE=AD,連接BE與DC交于O點.
(1)求證:△BOC≌△EOD;
(2)當∠A=
12
∠EOC時,連接BD、CE,求證:四邊形BCED為矩形.
分析:(1)根據平行四邊形性質得出AD=BC,AD∥BC,推出∠EDO=∠BCO,∠DEO=∠CBO,求出DE=BC,根據ASA推出兩三角形全等即可;
(2)求出∠EDO=∠A=
1
2
∠EOC,推出∠ODE=∠OED,推出OD=OE,得出平行四邊形BCED,推出CD=BE,根據矩形的判定推出即可.
解答:證明:(1)∵在平行四邊形ABCD中,
AD=BC,AD∥BC,
∴∠EDO=∠BCO,∠DEO=∠CBO,
∵DE=AD,
∴DE=BC,
在△BOC和△EOD中
∠OBC=∠OED
BC=DE
∠OCB=∠ODE
,
∴△BOC≌△EOD(ASA);

(2)∵DE=BC,DE∥BC,
∴四邊形BCED是平行四邊形,
在平行四邊形ABCD中,AB∥DC,
∴∠A=∠ODE,
∵∠A=
1
2
∠EOC,
∴∠ODE=
1
2
∠EOC,
∵∠ODE+∠OED=∠EOC,
∴∠ODE=∠OED,
∴OE=OD,
∵平行四邊形BCED中,CD=2OD,BE=2OE,
∴CD=BE,
∴平行四邊形BCED為矩形.
點評:本題考查了平行四邊形的性質和判定,矩形的判定,平行線的性質,全等三角形的性質和判定,三角形的外角性質等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形AB精英家教網CD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設
CGCB
=k
,求sin∠E和k.
((2),(3)的結果都用含m的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知平行四邊形ABCD的對角線AC,BD相交于點O,BD繞點O順時針旋轉交AB,DC于E,F.
(1)證明:四邊形BFDE是平行四邊形;
(2)BD繞點O順時針旋轉
 
度時,平行四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知平行四邊形ABCD中,P是對角線BD上的一點,過P點作MN∥AD,EF∥CD,分別精英家教網交AB、CD、AD、BC于M、N、E、F,設a=PM•PE,b=PN•PF.
(1)請判斷a與b的大小關系,并說明理由;
(2)當
BP
PD
=2
時,求
S平行四邊形PEAM
S△ABD
的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

23、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出么ABC的平分線BE,交AD的延長線于點E,交DC于點F(保留作圖痕跡,不寫作法);
(2)求證:△ABE是等腰三角形;
(3)在(1)中所得圖形中,除△ABE外,請你寫出其他的等腰三角形.(不要求證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知平行四邊形ABCD,作DE⊥AB,垂足為E,把三角形AED沿AB方向平移AB長個單位長度.
(1)作出平移后的圖形;
(2)經過這樣的平移后,原來的圖形變成了什么圖形?
(3)這兩個圖形的面積相等嗎?只需給出答案,不必說明理由.

查看答案和解析>>

同步練習冊答案