【題目】定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.
(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是________,推斷的數(shù)學(xué)依據(jù)是________.
(2)如圖②,在△ABC中,∠B=45°,AB=,BC=8,AD為邊BC的中線,求邊BC的中垂距.
(3)如圖③,在矩形ABCD中,AB=6,AD=4.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.
【答案】(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).
【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質(zhì)即可判斷。
(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長。
(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可。
解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等
(2)解:如圖②中,作AE⊥BC于E.
在Rt△ABE中,∵∠AEB=90°,∠B=45°,AB=3 ,
∴AE=BE=3,
∵AD為BC邊中線,BC=8,
∴BD=DC=4,
∴DE=BD﹣BE=4﹣3=1,
∴邊BC的中垂距為1
(3)解:如圖③中,作CH⊥AF于H.
∵四邊形ABCD是矩形,
∴∠D=∠EHC=∠ECF=90°,AD∥BF,
∵DE=EC,∠AED=∠CEF,
∴△ADE≌△FCE,
∴AE=EF,
在Rt△ADE中,∵AD=4,DE=3,
∴AE= =5,
∵∠D=EHC,∠AED=∠CEH,
∴△ADE∽△CHE,
∴ = ,
∴ = ,
∴EH= ,
∴△ACF中邊AF的中垂距為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=3,AD=8,點E為BC的中點,連接AE,EF是∠AEC的平分線,交AD于點F,則FD=( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線交軸于點,交軸于 (在左),且;
(1)如圖,求拋物線的解析式;
(2)如圖,在第一象限內(nèi)拋物線上有一點,且點在對稱軸的右側(cè),連接交軸于點,過點作軸的垂線,垂足為,設(shè)點的橫坐標(biāo)為,求出與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)如圖,在(2)的條件下,在點右側(cè)軸上有一點,且,連接,且與相交于點,連接,點是線段的延長線上一點,連接,使,取中點,在線段上取一點,射線與線段相交于點,連接,在線段上取一點,連接,使得,若,且,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求點A、B、C的坐標(biāo);
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM.如圖,點P在點Q左邊,試用含m的式子表示矩形PQNM的周長;
(3)當(dāng)矩形PQNM的周長最大時,m的值是多少?并求出此時的△AEM的面積;
(4)在(3)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=2DQ,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生”號召,某校開展了志愿者服務(wù)活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項,活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計圖;
(3)該校共有學(xué)生2000人,估計其中參與了4項或5項活動的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2015年投入教育經(jīng)費2900萬元,2017年投入教育經(jīng)費3509萬元.
(1)求2015年至2017年該地區(qū)投入教育經(jīng)費的年平均增長率;
(2)按照義務(wù)教育法規(guī)定,教育經(jīng)費的投入不低于國民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國民生產(chǎn)總值的增長情況,該地區(qū)到2019年需投入教育經(jīng)費4250萬元,如果按(1)中教育經(jīng)費投入的增長率,到2019年該地區(qū)投入的教育經(jīng)費是否能達(dá)到4250萬元?請說明理由.
(參考數(shù)據(jù): ,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,熱氣球的探測器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知AB⊥BC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點E,已知AH長米,HF長米,HE長1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點E到地面的距離.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com