【題目】如圖,已知正方形的邊長為,點是邊上的一個動點,連接,過點作的垂線交于點,以為邊作正方形,頂點在線段上,對角線、相交于點.(1)若,則 ;
(2)①求證:點一定在的外接圓上;
②當(dāng)點從點運動到點時,點也隨之運動,求點經(jīng)過的路徑長;
(3)在點從點到點的運動過程中,的外接圓的圓心也隨之運動,求該圓心到邊的距離的最大值.
【答案】(1);(2)①見解析;②2;(3) .
【解析】(1)根據(jù)正方形的性質(zhì)得到∠A=∠B=∠EPG=90°,PF⊥EG,然后根據(jù)垂直的性質(zhì)和直角三角形的兩銳角互余的性質(zhì)得到∠AEP=∠BPC,再根據(jù)兩角對應(yīng)相等的兩三角形相似證得△APE∽△BCP,最后根據(jù)相似三角形的對應(yīng)邊成比例求解即可;
(2)①證明A、P、O、E四點共圓,即可得出結(jié)論;
②連接OA、AC,由勾股定理得到AC的長,由圓周角定理得出∠OAP=∠OEP=45°,點O在AC上,當(dāng)點P運動到點B時,O為AC 的中點,即可求解;
(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得到MN=AE,設(shè)AP=x,則BP=4-x,由(1)中的相似三角形的性質(zhì):對應(yīng)邊成比例,求出AE= x-x2=-(x-2)2+1,由二次函數(shù)的最值求出AE的最大值為1,然后可求MN的值.
(1)解:∵四邊形ABCD、四邊形PEFG是正方形,
∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
∴∠AEP=∠BPC,
∴△APE∽△BCP,
∴,即,
解得:AE=;
(2)①證明:∵PF⊥EG,
∴∠EOP=90°,
∴∠EOP+∠A=180°,
∴A、P、O、E四點共圓,
∴點O一定在△APE的外接圓上;
②解:連接OA、AC,如圖1所示:
∵四邊形ABCD是正方形,
∴∠B=90°,∠BAC=45°,
∴AC=,
∵A、P、O、E四點共圓,
∴∠OAP=∠OEP=45°,
∴點O在AC上,
當(dāng)P運動到點B時,O為AC的中點,OA=AC=2,
即點O經(jīng)過的路徑長為2;
(3)解:設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:
則MN∥AE,
∵ME=MP,
∴AN=PN,
∴MN=AE,
設(shè)AP=x,則BP=4-x,
由(1)得:△APE∽△BCP,
∴,即,
解得:AE=x-x2=-(x-2)2+1,
∴x=2時,AE的最大值為1,此時MN的值最大=×1=,即△APE的圓心到AB邊的距離的最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1,∠2互為補角,且∠3=∠B,
(1)求證:∠AFE=∠ACB
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)(a≠0)的圖像與x軸交于點A(-2,0)、B,與y軸交于點C,tan∠ABC=2.
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸向上平移,使拋物線與線段EF總有公共點.試探究:拋物線最多可以向上平移多少個單位長度?
(3)在線段OB的垂直平分線上是否存在點P,使得經(jīng)過點P的直線PM垂直于直線CD,且與直線OP的夾角為75°?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=8cm,BC=15cm,點M從A點出發(fā)沿A→C→B路徑向終點運動,終點為B點,點N從B點出發(fā)沿B→C→A路徑向終點運動,終點為A點,點M和N分別以2cm/s和3cm/s的運動速度同時開始運動,兩點都要到達相應(yīng)的終點時才能停止運動,分別過M和N作ME⊥l于E,NF⊥l于F.設(shè)運動時間為t秒,要使以點M,E,C為頂點的三角形與以點N,F,C為頂點的三角形全等,則t的值為( 。
A. 4.6或7B. 7或8C. 4.6或8D. 4.6或7或8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.
(1)作出△ABD 的邊 BD 上的高.
(2)若△ABC 的面積為 10,求△ADC 的面積.
(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)校門前有座山,山上有一電線桿PQ,他很想知道電線桿PQ 的高度.于是,有一天,小明和他的同學(xué)小亮帶著側(cè)傾器和皮尺來到山腳下進行測量.測量方案如下:如圖,首先,小明站在地面上的點A處,測得電線桿頂端點P的仰角是45;然后小明向前走6米到達點B處,測得電線桿頂端點P和電線桿底端點Q的仰角分別是60和30,設(shè)小明的眼睛到地面的距離為1.6米.請根據(jù)以上測量的數(shù)據(jù),計算電線桿PQ的高度(結(jié)果精確到1米)參考數(shù)據(jù):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王先生到泉州臺商投資區(qū)行政服務(wù)中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作﹣1,王先生從1樓出發(fā),電梯上下樓層依次記錄如下:(單位:層)
+6,﹣3,+10,﹣8,+12,﹣7,﹣10.
(1)請你通過計算說明王先生最后是否回到出發(fā)點1樓.
(2)該中心大樓每層高3m,電梯每向上或下1m需要耗電0.1度,根據(jù)王先生現(xiàn)在所處位置,請你算算,他辦事時電梯需要耗電多少度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com