【題目】如圖,△ABD是以BD為斜邊的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中點(diǎn)為E,AD與BE的延長(zhǎng)線交于點(diǎn)F,則∠AFB的度數(shù)為( )
A.30°
B.15°
C.45°
D.25°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OC是∠AOB的平分線,OD是∠AOC的平分線,OE是∠BOD的平分線,且∠BOE=30°,求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)接到為地震災(zāi)區(qū)生產(chǎn)活動(dòng)房的任務(wù),此企業(yè)擁有九個(gè)生產(chǎn)車(chē)間,現(xiàn)在每個(gè)車(chē)間原有的成品活動(dòng)房一樣多,每個(gè)車(chē)間的生產(chǎn)能力也一樣.有A、B兩組檢驗(yàn)員,其中A組有8名檢驗(yàn)員前兩天時(shí)間將第一、二車(chē)間的所有成品(原來(lái)的和這兩天生產(chǎn)的)檢驗(yàn)完畢后,再去檢驗(yàn)第三、四車(chē)間所有成品,又用去三天時(shí)間;同時(shí)這五天時(shí)間B組檢驗(yàn)員也檢驗(yàn)完余下的五個(gè)車(chē)間的所有成品.如果每個(gè)檢驗(yàn)員的檢驗(yàn)速度一樣快,那么B組檢驗(yàn)員人數(shù)為( 。
A. 8人B. 10人C. 12人D. 14人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,過(guò)點(diǎn)D作DE⊥BD交BA的延長(zhǎng)線于點(diǎn)E.
(1)當(dāng)ABCD是菱形時(shí),證明:AE=AB;
(2)當(dāng)ABCD是矩形時(shí),設(shè)∠E=α,問(wèn):∠E與∠DOA滿足什么數(shù)量關(guān)系?寫(xiě)出結(jié)論并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推動(dòng)“龍江經(jīng)濟(jì)帶”建設(shè),我省某蔬菜企業(yè)決定通過(guò)加大種植面積、增加種植種類(lèi),促進(jìn)經(jīng)濟(jì)發(fā)展.2017年春,預(yù)計(jì)種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經(jīng)預(yù)算,種植西紅柿的利潤(rùn)可達(dá)1萬(wàn)元/公頃,青椒1.5萬(wàn)元/公頃,馬鈴薯2萬(wàn)元/公頃,設(shè)種植西紅柿x公頃,總利潤(rùn)為y萬(wàn)元.
(1)求總利潤(rùn)y(萬(wàn)元)與種植西紅柿的面積x(公頃)之間的關(guān)系式.
(2)若預(yù)計(jì)總利潤(rùn)不低于180萬(wàn)元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過(guò)獲得最大利潤(rùn)的 在冬季同時(shí)建造A、B兩種類(lèi)型的溫室大棚,開(kāi)辟新的經(jīng)濟(jì)增長(zhǎng)點(diǎn),經(jīng)測(cè)算,投資A種類(lèi)型的大棚5萬(wàn)元/個(gè),B種類(lèi)型的大棚8萬(wàn)元/個(gè),請(qǐng)直接寫(xiě)出有哪幾種建造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.
求證:∠C=∠D.
證明:因?yàn)椤?/span>1=∠2(已知),∠1=∠3( )
得∠2=∠3( )
所以AE//_______( )
得∠4=∠F( )
因?yàn)?/span>__________(已知)
得∠4=∠A
所以______//_______( )
所以∠C=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知4m=a,8n=b,用含a,b的式子表示下列代數(shù)式: ①求:22m+3n的值,
②求:24m﹣6n的值;
(2)已知2×8x×16=223,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開(kāi)始的3分內(nèi)只進(jìn)水不出水,在隨后的9分內(nèi)既進(jìn)水又出水,每分的進(jìn)水量和出水量都是常數(shù).容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的關(guān)系如圖所示.當(dāng)容器內(nèi)的水量大于5升時(shí),求時(shí)間x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com