【題目】如圖,已知ABC三個內(nèi)角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若BAC=80°,則BCA的度數(shù)為   

【答案】60°.

【解析】

試題可證明COD≌△COB,得出D=CBO,再根據(jù)BAC=80°,得BAD=100°,由角平分線可得BAO=40°,從而得出DAO=140°,根據(jù)AD=AO,可得出D=20°,即可得出CBO=20°,則ABC=40°,最后算出BCA=60°

試題解析:ABC三個內(nèi)角的平分線交于點O,

∴∠ACO=BCO,

COD和COB中,

∴△COD≌△COB,

∴∠D=CBO,

∵∠BAC=80°,

∴∠BAD=100°,

∴∠BAO=40°,

∴∠DAO=140°,

AD=AO,∴∠D=20°,

∴∠CBO=20°,

∴∠ABC=40°,

∴∠BCA=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點O為直線AB上一點,過點O作射線OC,使∠AOC=70°.

1)如圖1,若OD平分∠AOC,求∠DOB的度數(shù);

2)射線OMOA出發(fā),繞點O以每秒6°的速度逆時針旋轉(zhuǎn),同時,射線ONOC出發(fā)繞點O以每秒4°的速度逆時針旋轉(zhuǎn),OMON同時出發(fā)(當(dāng)ON首次與OB重合時,兩條射線都停止運動),設(shè)運動的時間為t秒.

(i)如圖2,在整個運動過程中,當(dāng)∠BON=2COM時,求t的值;

()如圖3OP平分∠AOM,OQ平分∠BON,是否存在合適的t,使OC平分∠POQ,若存在,求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,平分于點,點分別是上的動點,當(dāng)時,的最小值等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角ABC中,BAC=90°,D在BC上,連接AD,作BFAD分別交AD于E,AC于F.

(1)如圖1,若BD=BA,求證:ABE≌△DBE;

(2)如圖2,若BD=4DC,取AB的中點G,連接CG交AD于M,求證:GM=2MC;AG2=AFAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用棋子擺成的字:

第一個 第二個 第三個

如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):

(1)第四、第五個字分別需用      枚棋子.

(2)第n字需用   枚棋子.

(3)如果某一圖形共有102枚棋子,你知道它是第幾個字嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由同樣大小的圓按一定的規(guī)律組成,其中,第①個圖形中一共有2個圓:第②個圖形中一共有7個圓:第③個圖形中一共有16個圓;第④個圖形中一共有29個圓,,則第⑦個圖形中圓的個數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC5,cos∠ABC,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C

1)如圖,當(dāng)點B1在線段BA延長線上時.求證:BB1∥CA1;△AB1C的面積;

2)如圖,點EBC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1,求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

1)若1表示的點與表示的點重合,則表示的點與數(shù) 表示的點重合;

2)若表示的點與3表示的點重合,回答以下問題:

5表示的點與數(shù) 表示的點重合;

②若數(shù)軸上、兩點之間的距離為9的左側(cè)),且、兩點經(jīng)折疊后重合,求、兩點表示的數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊答案