我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形,你可以利用這一結(jié)論解決問題。如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是將x軸所在的直線繞著原點(diǎn)O逆時針旋轉(zhuǎn)度后的圖形。它與反比例函數(shù)的圖象分別交于第一、三象限的點(diǎn)B、D,已知點(diǎn)A(-m,0)、C(m,0)。

(1)判斷并填寫,不論取何值,四邊形ABCD的形狀一定是______;
(2)①當(dāng)點(diǎn)B坐標(biāo)為(p,1)時,四邊形ABCD是矩形,試求p、和m的值;
②觀察猜想:對①中的m值,能使四邊形ABCD為矩形的點(diǎn)B共有幾個?(不必說理)
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點(diǎn)的坐標(biāo);若不能,說明理由。
(1)平行四邊形;(2)P=,=30°,m=2;(3)2個;(4)不能

試題分析:(1)由于反比例函數(shù)的圖象是一個中心對稱圖形,點(diǎn)B、D是正比例函數(shù)與反比例函數(shù)圖象的交點(diǎn),所以點(diǎn)B與點(diǎn)D關(guān)于點(diǎn)O成中心對稱,則OB=OD,又OA=OC,根據(jù)對角線互相平分的四邊形是平行四邊形,可得出四邊形ABCD的形狀;
(2)①把點(diǎn)B(p,1)代入,即可求出p的值;過B作BE⊥x軸于E,在Rt△BOE中,根據(jù)正切函數(shù)的定義求出tanα的值,得出α的度數(shù);要求m的值,首先解Rt△BOE,得出OB的長度,然后根據(jù)進(jìn)行的對角線相等得出OA=OB=OC=OD,從而求出m的值;②當(dāng)m=2時,設(shè)B(x,),則x>0,由OB=2,得出,解此方程,得滿足條件的x的值有兩個,故能使四邊形ABCD為矩形的點(diǎn)B共有兩個;
(3)假設(shè)四邊形ABCD為菱形,根據(jù)菱形的對角線垂直且互相平分,可知AC⊥BD,且AC與BD互相平分,又AC在x軸上,所以BD應(yīng)在y軸上,這與“點(diǎn)B、D分別在第一、三象限”矛盾,所以四邊形ABCD不可能為菱形.
(1)平行四邊形;
(2)∵矩形對角線相等且互相平分
∴OC=OB,又B(P,1)在上,則P=
∴B(,1),則OB=2,
∴OC=2,則m=2,∠BOC=30°,即=30°
(3)當(dāng)m=2時,點(diǎn)B共有2個;
(4)四邊形ABCD不能是菱形。理由如下:
∵反比例圖象與y軸永無交點(diǎn),即BD不可能在y軸上。
∴BD不垂直于AC
即四邊形ABCD的對角線一定不垂直
∴四邊形ABCD不能為菱形
點(diǎn)評:本題知識點(diǎn)較多,綜合性強(qiáng),難度較大,一般是中考壓軸題,需要特別注意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知反比例函數(shù)的圖象如圖,則它關(guān)于x軸對稱的圖象的函數(shù)解析式為 y=﹣(x>0) 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

反比例函數(shù)的圖象如圖所示,點(diǎn)M是該函數(shù)圖象上一點(diǎn),MN⊥x軸,垂足是點(diǎn)N,如果SMON=2,則k的值為(    )
A.2  B.-2C.4  D.-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn),連結(jié),若.求該反比例函數(shù)的解析式和直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若反比例函數(shù)的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,P是反比例函數(shù)y=在第一象限分支上的一個動點(diǎn),PAx軸,隨著x的逐漸增大,△APO的面積將(   )
A.增大B.減小C.不變D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知反比例函數(shù)的圖象經(jīng)過點(diǎn)A,軸于點(diǎn)B,的面積是3,則k的值為
A.6B.3C.-3D.-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:雙曲線上有一點(diǎn)A,過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為2,則該雙曲線的關(guān)系式為                  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果反比例函數(shù)y=圖象,在每個象限內(nèi),y都隨x的增大而減少,那么a的值可以是      (寫出一個符合條件的實(shí)數(shù)即可).

查看答案和解析>>

同步練習(xí)冊答案