重慶潼南某一蔬菜種植基地種植的一種蔬菜,它的成本是每千克2元,售價是每千克3元,年銷量為10(萬千克).多吃綠色蔬菜有利于身體健康,因而綠色蔬菜倍受歡迎,十分暢銷.為了獲得更好的銷量,保證人民的身體健康,基地準(zhǔn)備拿出一定的資金作綠色開發(fā),根據(jù)經(jīng)驗,若每年投入綠色開發(fā)的資金X(萬元),該種蔬菜的年銷量將是原年銷量的m倍,它們的關(guān)系如下表:
x(萬元) 0 1 2 3 4
m 1 1.5 1.8 1.9 1.8
(1)試估計并驗證m與x之間的函數(shù)類型并求該函數(shù)的表達(dá)式;
(2)若把利潤看著是銷售總額減去成本費(fèi)和綠色開發(fā)的投入資金,試求年利潤W(萬元)與綠色開發(fā)投入的資金x(萬元)的函數(shù)關(guān)系式;并求投入的資金不低于3萬元,又不超過5萬元時,x取多少時,年利潤最大,求出最大利潤.
(3)基地經(jīng)調(diào)查:若增加種植人員的獎金,從而提高種植積極性,又可使銷量增加,且增加的銷量y(萬千克)與增加種植人員的獎金z(萬元)之間滿足y=-z2+4z,若基地將投入5萬元用于綠色開發(fā)和提高種植人員的獎金,應(yīng)怎樣分配這筆資金才能使年利潤達(dá)到17萬元且綠色開發(fā)投入大于獎金?
2
=1.4
分析:(1)根據(jù)題意判斷出函數(shù)解析式的形式,再利用待定系數(shù)法求二次函數(shù)解析式,可求出m與x的二次函數(shù)關(guān)系式.
(2)根據(jù)題意可知S=(3-2)×10m-x=-x2+5x+10;
(3)將m代入(2)中的W=-x2+5x+10,故W=-m2+5m+10;再將(5-m)代入y=-z2+4z,故y=-(5-m)2+4(5-m)=-m2+6m-5,由于單位利潤為1,所以由增加獎金而增加的利潤就是-m2+6m-5,進(jìn)而求出總利潤W'=(-m2+5m+10)+(-m2+6m-5)-(5-m)=-2m2+12m,即可得出答案.
解答:解:(1)根據(jù)不是一次函數(shù)(不是線性的),也不是反比例函數(shù)(m*x的值不是常數(shù)),所以選擇二次函數(shù),
設(shè)m與x的函數(shù)關(guān)系式為m=ax2+bx+c,
由題意得:
c=1
a+b+c=1.5
4a+2b+c=1.8

解得:
a=-0.1
b=0.6
c=1
,
∴m與x的函數(shù)關(guān)系式為:m=-0.1x2+0.6x+1;

(2)∵利潤=銷售總額減去成本費(fèi)和綠色開發(fā)的投入資金,
∴W=(3-2)×10m-x=-x2+5x+10;
當(dāng)x=-
b
2a
=2.5時,W最大,
∵由于投入的資金不低于 3 萬元,又不超過 5 萬元,所以3≤x≤5,
而a=-1<0,拋物線開口向下,且取值范圍在頂點(diǎn)右側(cè),W隨x的增大而減小,故最大值在x=3處,
∴當(dāng)x=3時,W最大為:16萬元;

(3)設(shè)用于綠色開發(fā)的資金為m萬元,則用于提高獎金的資金為(5-m)萬元,
將m代入(2)中的W=-x2+5x+10,故W=-m2+5m+10;
將(5-m)代入y=-z2+4z,故y=-(5-m)2+4(5-m)=-m2+6m-5,
由于單位利潤為1,所以由增加獎金而增加的利潤就是-m2+6m-5;
所以總利潤W'=(-m2+5m+10)+(-m2+6m-5)-(5-m)=-2m2+12m,
因為要使年利潤達(dá)到17萬,所以-2m2+12m=17,
整理得2m2-12m+17=0,
解得:m=
6+
2
2
≈3.7或m=
6-
2
2
≈2.3,而綠色開發(fā)投入要大于獎金,
所以m=3.7,5-m=1.3.
所以用于綠色開發(fā)的資金為3.7萬元,獎金為1.3萬元.
點(diǎn)評:此題主要考查了二次函數(shù)的應(yīng)用,以及待定系數(shù)法求二次函數(shù)解析式和一元二次方程的解法等知識,根據(jù)已知得出由增加獎金而增加的利潤是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012年重慶市中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:解答題

重慶潼南某一蔬菜種植基地種植的一種蔬菜,它的成本是每千克2元,售價是每千克3元,年銷量為10(萬千克).多吃綠色蔬菜有利于身體健康,因而綠色蔬菜倍受歡迎,十分暢銷.為了獲得更好的銷量,保證人民的身體健康,基地準(zhǔn)備拿出一定的資金作綠色開發(fā),根據(jù)經(jīng)驗,若每年投入綠色開發(fā)的資金X(萬元),該種蔬菜的年銷量將是原年銷量的m倍,它們的關(guān)系如下表:
x(萬元)1234
m11.51.81.91.8
(1)試估計并驗證m與x之間的函數(shù)類型并求該函數(shù)的表達(dá)式;
(2)若把利潤看著是銷售總額減去成本費(fèi)和綠色開發(fā)的投入資金,試求年利潤W(萬元)與綠色開發(fā)投入的資金x(萬元)的函數(shù)關(guān)系式;并求投入的資金不低于3萬元,又不超過5萬元時,x取多少時,年利潤最大,求出最大利潤.
(3)基地經(jīng)調(diào)查:若增加種植人員的獎金,從而提高種植積極性,又可使銷量增加,且增加的銷量y(萬千克)與增加種植人員的獎金z(萬元)之間滿足y=-z2+4z,若基地將投入5萬元用于綠色開發(fā)和提高種植人員的獎金,應(yīng)怎樣分配這筆資金才能使年利潤達(dá)到17萬元且綠色開發(fā)投入大于獎金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市中考數(shù)學(xué)限時訓(xùn)練試卷(一)(解析版) 題型:解答題

重慶潼南某一蔬菜種植基地種植的一種蔬菜,它的成本是每千克2元,售價是每千克3元,年銷量為10(萬千克).多吃綠色蔬菜有利于身體健康,因而綠色蔬菜倍受歡迎,十分暢銷.為了獲得更好的銷量,保證人民的身體健康,基地準(zhǔn)備拿出一定的資金作綠色開發(fā),根據(jù)經(jīng)驗,若每年投入綠色開發(fā)的資金X(萬元),該種蔬菜的年銷量將是原年銷量的m倍,它們的關(guān)系如下表:
x(萬元)1234
m11.51.81.91.8
(1)試估計并驗證m與x之間的函數(shù)類型并求該函數(shù)的表達(dá)式;
(2)若把利潤看著是銷售總額減去成本費(fèi)和綠色開發(fā)的投入資金,試求年利潤W(萬元)與綠色開發(fā)投入的資金x(萬元)的函數(shù)關(guān)系式;并求投入的資金不低于3萬元,又不超過5萬元時,x取多少時,年利潤最大,求出最大利潤.
(3)基地經(jīng)調(diào)查:若增加種植人員的獎金,從而提高種植積極性,又可使銷量增加,且增加的銷量y(萬千克)與增加種植人員的獎金z(萬元)之間滿足y=-z2+4z,若基地將投入5萬元用于綠色開發(fā)和提高種植人員的獎金,應(yīng)怎樣分配這筆資金才能使年利潤達(dá)到17萬元且綠色開發(fā)投入大于獎金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市中考數(shù)學(xué)限時訓(xùn)練試卷(四)(解析版) 題型:解答題

重慶潼南某一蔬菜種植基地種植的一種蔬菜,它的成本是每千克2元,售價是每千克3元,年銷量為10(萬千克).多吃綠色蔬菜有利于身體健康,因而綠色蔬菜倍受歡迎,十分暢銷.為了獲得更好的銷量,保證人民的身體健康,基地準(zhǔn)備拿出一定的資金作綠色開發(fā),根據(jù)經(jīng)驗,若每年投入綠色開發(fā)的資金X(萬元),該種蔬菜的年銷量將是原年銷量的m倍,它們的關(guān)系如下表:
x(萬元)1234
m11.51.81.91.8
(1)試估計并驗證m與x之間的函數(shù)類型并求該函數(shù)的表達(dá)式;
(2)若把利潤看著是銷售總額減去成本費(fèi)和綠色開發(fā)的投入資金,試求年利潤W(萬元)與綠色開發(fā)投入的資金x(萬元)的函數(shù)關(guān)系式;并求投入的資金不低于3萬元,又不超過5萬元時,x取多少時,年利潤最大,求出最大利潤.
(3)基地經(jīng)調(diào)查:若增加種植人員的獎金,從而提高種植積極性,又可使銷量增加,且增加的銷量y(萬千克)與增加種植人員的獎金z(萬元)之間滿足y=-z2+4z,若基地將投入5萬元用于綠色開發(fā)和提高種植人員的獎金,應(yīng)怎樣分配這筆資金才能使年利潤達(dá)到17萬元且綠色開發(fā)投入大于獎金?

查看答案和解析>>

同步練習(xí)冊答案