精英家教網(wǎng)如圖,圓錐底面圓的直徑為6cm,高為4cm,則它的全面積為
 
cm2(結(jié)果保留π).
分析:利用勾股定理求得圓錐的母線長,進(jìn)而利用圓錐表面積=底面積+側(cè)面積=π×底面半徑2+底面周長×母線長÷2求解即可.
解答:解:底面圓的直徑為6cm,則底面半徑=3cm,底面周長=6πcm,由勾股定理得母線長=5cm,
側(cè)面面積=
1
2
×6π×5=15πcm2,底面面積=9πcm2,全面積=15π+9π=24πcm2
點(diǎn)評:本題利用了勾股定理,圓的周長公式和扇形面積公式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.
(1)請完成如下操作:
①以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.
(2)請?jiān)冢?)的基礎(chǔ)上,完成下列問題:
①寫出點(diǎn)的坐標(biāo):C
 
、D
 
;
②⊙D的半徑=
 
(結(jié)果保留根號);
③若扇形ADC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面面積為
 
(結(jié)果保留π);
④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆北京四中九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系.設(shè)該圓弧所在圓的圓心為點(diǎn)D,連結(jié)AD、CD.
請完成下列問題:

(1)出點(diǎn)D的坐標(biāo):D___________;
(2)D的半徑=_____(結(jié)果保留根號);
(3)若扇形DAC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面面積為__________(結(jié)果保留π);
(4)若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.

(1)請完成如下操作:

①以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連結(jié)AD、CD。

(2)請?jiān)冢?)的基礎(chǔ)上,完成下列問題:

①寫出點(diǎn)的坐標(biāo):C          、D           ;

②⊙D的半徑=            (結(jié)果保留根號);

③若扇形ADC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面面積為         (結(jié)果保留π);

④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A,B,C

(1)請完成如下操作:

①以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;

②適當(dāng)選用直尺、圓規(guī)畫出該圓弧所在圓的圓心D的位置(不寫作法,保留痕跡),并連結(jié)ADCD

(2)請?jiān)冢?)的基礎(chǔ)上,完成下列問題:

①寫出點(diǎn)的坐標(biāo):C          D           ;

②⊙D的半徑=            (結(jié)果保留根號);

③若扇形ADC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面面積為         (結(jié)果保留π);

④若已知點(diǎn)E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說明你的理由.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C。

(1)請完成如下操作:

①以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連結(jié)AD、CD。

(2)請?jiān)冢?)的基礎(chǔ)上,完成下列問題:

①寫出點(diǎn)的坐標(biāo):C          、D           ;

②⊙D的半徑=            (結(jié)果保留根號);

③若扇形ADC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面面積為         (結(jié)果保留π);

④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說明你的理由。

查看答案和解析>>

同步練習(xí)冊答案