設(shè)m為實(shí)數(shù),求m為何值時(shí),關(guān)于x的二次函數(shù)y=-2(m+1)x+2-m的圖象的頂點(diǎn)位置最低。

答案:
解析:

當(dāng)m=時(shí),拋物線(xiàn)的頂點(diǎn)位置最低


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)附加題
(1)試用一元二次方程的求根公式,探索方程ax2+bx+c=0(a≠0)的兩根互為相反數(shù)的條件是
 

(2)已知x、y為實(shí)數(shù),
3x-2
+y2-4y+4=0
,則
x
y
=
 

(3)在直角梯形ABCD中,AD∥BC,∠C=90度,BC=16,AD=21,DC=12,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿線(xiàn)段DA方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線(xiàn)段CB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)D、C同時(shí)出發(fā),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①設(shè)△BPQ的面積為S,求S和t之間的函數(shù)關(guān)系式;
②當(dāng)t為何值時(shí),以B、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰三等形?(分類(lèi)討論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程7x3-7(p+2)x2+(44p-1)x+2=60p(*)
①求證:不論p為何實(shí)數(shù)時(shí),方程(*)有固定的自然數(shù)解,并求這自然數(shù).
②設(shè)方程另外的兩個(gè)根為u、v,求u、v的關(guān)系式.
③若方程(*)的三個(gè)根均為自然數(shù),求p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次方程x2=2(1-m)x-m2兩實(shí)數(shù)根為x1、x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2+x1x2,求m為何值時(shí),y的值最小,最小值是多少?
(3)若m=-1,求代數(shù)式
x1(-2x22+9x2-2)
x1+x2
的值.(提示:若一元二次方程ax2+bx+c=0(a≠0)兩實(shí)數(shù)根為x1、x2,則x1+x2=-
b
a
,x1x2=
c
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年江蘇省南通市啟東中學(xué)高一提前招生試卷(解析版) 題型:解答題

已知關(guān)于x的方程7x3-7(p+2)x2+(44p-1)x+2=60p(*)
①求證:不論p為何實(shí)數(shù)時(shí),方程(*)有固定的自然數(shù)解,并求這自然數(shù).
②設(shè)方程另外的兩個(gè)根為u、v,求u、v的關(guān)系式.
③若方程(*)的三個(gè)根均為自然數(shù),求p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案