已知拋物線

1.求拋物線頂點(diǎn)M的坐標(biāo);

2.若拋物線與x軸的交點(diǎn)分別為點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)N為線段BM上的一點(diǎn),過(guò)點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q.當(dāng)點(diǎn)N在線段BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B,點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為S,求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;

3.在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

 

1.∵拋物線∴頂點(diǎn)M的坐標(biāo)為

2.拋物線與與x軸的兩交點(diǎn)為A(-1,0) ,B(2,0).

設(shè)線段BM所在直線的解析式為

解得 ∴線段BM所在直線的解析式為.  

設(shè)點(diǎn)N的坐標(biāo)為.∵點(diǎn)N在線段BM上,∴. ∴

∴S四邊形NQAC=S△AOC+S梯形OQNC

∴S與t之間的函數(shù)關(guān)系式為,自變量t的取值范圍為

3.假設(shè)存在符合條件的點(diǎn)P,設(shè)點(diǎn)P的坐標(biāo)為P(m,n),則

,

分以下幾種情況討論:

①若∠PAC=90°,則.∴

解得.∵ .∴.∴.         

②若∠PCA=90°,則.∴

解得,.∵,∴.∴

當(dāng)點(diǎn)P在對(duì)稱軸右側(cè)時(shí),PA>AC,所以邊AC的對(duì)角∠APC不可能是直角.

∴存在符合條件的點(diǎn)P,且坐標(biāo)為

            

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為
5
2
米,旗桿AB高為3米,C點(diǎn)的垂精英家教網(wǎng)直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為數(shù)學(xué)公式米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:河南省期中題 題型:解答題

已知,如圖,在平面直角坐標(biāo)系中,拋物線的解析式為,將拋物線平移后得到拋線物,若拋物線經(jīng)過(guò)點(diǎn)(0,2),且其頂點(diǎn)A的橫坐標(biāo)為最小正整數(shù)。
(1 )求拋物線l2 的解析式;
(2 )說(shuō)明將拋物線l1 如何平移得到拋物線l2 ;
(3 )若將拋物線l2 沿其對(duì)稱軸繼續(xù)上下平移,得到拋物線l3 ,設(shè)拋物線l3 的頂點(diǎn)為B ,直線OB 與拋物線l3 的另一個(gè)交點(diǎn)為C .當(dāng)OB=OC 時(shí),求點(diǎn)C 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知m、n是方程的兩個(gè)實(shí)數(shù)根,且m<n,拋物線的圖像經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).  

(1)求這個(gè)拋物線的解析式;

(2)設(shè)(1)中拋物線與x軸的另一交點(diǎn)為C,拋物線的

頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;

(注:拋物線的頂點(diǎn)坐標(biāo)為

(3)P是線段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋

物線交于H點(diǎn),若直線BC把△PCH分成面積之比

為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).              

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案