已知拋物線.
1.求拋物線頂點(diǎn)M的坐標(biāo);
2.若拋物線與x軸的交點(diǎn)分別為點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)N為線段BM上的一點(diǎn),過(guò)點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q.當(dāng)點(diǎn)N在線段BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B,點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為S,求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
3.在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
1.∵拋物線∴頂點(diǎn)M的坐標(biāo)為.
2.拋物線與與x軸的兩交點(diǎn)為A(-1,0) ,B(2,0).
設(shè)線段BM所在直線的解析式為.
∴解得 ∴線段BM所在直線的解析式為.
設(shè)點(diǎn)N的坐標(biāo)為.∵點(diǎn)N在線段BM上,∴. ∴.
∴S四邊形NQAC=S△AOC+S梯形OQNC.
∴S與t之間的函數(shù)關(guān)系式為,自變量t的取值范圍為.
3.假設(shè)存在符合條件的點(diǎn)P,設(shè)點(diǎn)P的坐標(biāo)為P(m,n),則且.
,,.
分以下幾種情況討論:
①若∠PAC=90°,則.∴
解得, .∵ .∴.∴.
②若∠PCA=90°,則.∴
解得,.∵,∴.∴.
當(dāng)點(diǎn)P在對(duì)稱軸右側(cè)時(shí),PA>AC,所以邊AC的對(duì)角∠APC不可能是直角.
∴存在符合條件的點(diǎn)P,且坐標(biāo)為,.
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:河南省期中題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,已知m、n是方程的兩個(gè)實(shí)數(shù)根,且m<n,拋物線的圖像經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一交點(diǎn)為C,拋物線的
頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(注:拋物線的頂點(diǎn)坐標(biāo)為
(3)P是線段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋
物線交于H點(diǎn),若直線BC把△PCH分成面積之比
為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com