【題目】先閱讀一段文字,再回答下列問題:
已知在平面內(nèi)兩點(diǎn)坐標(biāo)P1(x1,y1),P2(x2,y2),其兩點(diǎn)間距離公式為 ,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于x軸或垂直于x軸距離公式可簡(jiǎn)化成|x2-x1|或|y2-y1|.
(1)已知A(3,5),B(-2,-1),試求A,B兩點(diǎn)的距離;
(2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為-1,試求A,B兩點(diǎn)的距離.
(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為A(0,6),B(-3,2),C(3,2),你能斷定此三角形的形狀嗎?說明理由。
【答案】(1);(2)6;(3)△ABC為等腰三角形,理由見解析
【解析】
(1)根據(jù)點(diǎn)A、B的坐標(biāo)利用兩點(diǎn)間的距離公式即可求出A,B兩點(diǎn)間的距離;
(2)設(shè)點(diǎn)A的坐標(biāo)為(m,5),則點(diǎn)B的坐標(biāo)為(m,-1),根據(jù)點(diǎn)A、B的坐標(biāo)利用兩點(diǎn)間的距離公式即可求出A,B兩點(diǎn)間的距離;
(3)根據(jù)點(diǎn)A、B、C三點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式即可求出線段AB、AC、BC的長(zhǎng)度,由AB=AC即可得知△ABC為等腰三角形.
(1)∵A(3,5)、B(-2,-1),
∴AB= .
故答案為:.
(2)設(shè)點(diǎn)A的坐標(biāo)為(m,5),則點(diǎn)B的坐標(biāo)為(m,-1),
∴AB==6.
故答案為:6.
(3)△ABC為等腰三角形,理由如下:
∵A(0,6),B(-3,2),C(3,2),
∴AB=
∴AB=AC,
∴△ABC為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(不與A,B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得線段PE,連接BE,則∠CBE等于( )
A. 75° B. 60° C. 45° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),正方形OABC的定點(diǎn)A,B都在反比例函數(shù)y=(k>0,x>0)的圖象上,邊BC與x軸交于點(diǎn)D,則 的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=1,則△A8B8A9的邊長(zhǎng)_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有【 】
A.1組 B.2組 C.3組 D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=BC,∠ABC=90°,F 為 AB 延長(zhǎng)線上一點(diǎn),點(diǎn) E 在BC 上,且 AE=CF.
(1)求證: AE⊥CF;
(2)若∠CAE=25°,求∠ACF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,為中點(diǎn),延長(zhǎng)交于點(diǎn),其滿足,為上一點(diǎn),且于點(diǎn).下列判斷:①線段是的角平分線;②是邊上的中線;③線段是的邊上的高;④.其中判斷正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖7-①,圖7-②,圖7-③,圖7-④,…,是用圍棋棋子按照某種規(guī)律擺成的一行“廣”字,按照這種規(guī)律,第5個(gè)“廣”字中的棋子個(gè)數(shù)是________,第個(gè)“廣”字中的棋子個(gè)數(shù)是________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com