【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500 m,如圖是小明和爸爸所走的路程s(m)與步行時(shí)間t(min)的函數(shù)圖象.
(1)直接寫出小明所走路程s與時(shí)間t的函數(shù)關(guān)系式;
(2)小明出發(fā)多少時(shí)間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20 min到達(dá)公園,則小明在步行過程中停留的時(shí)間需作怎樣的調(diào)整?
【答案】(1)s=;(2)37.5;(3)小明在步行過程中停留的時(shí)間需減少5 min
【解析】
試題(1)根據(jù)函數(shù)圖形得到0≤t≤20、20<t≤30、30<t≤60時(shí),小明所走路程s與時(shí)間t的函數(shù)關(guān)系式;
(2)利用待定系數(shù)法求出小明的爸爸所走的路程s與步行時(shí)間t的函數(shù)關(guān)系式,列出二元一次方程組解答即可;
(3)分別計(jì)算出小明的爸爸到達(dá)公園需要的時(shí)間、小明到達(dá)公園需要的時(shí)間,計(jì)算即可.
試題解析:解:(1)s=;
(2)設(shè)小明的爸爸所走的路程s與步行時(shí)間t的函數(shù)關(guān)系式為:s=kt+b,則,解得,,則小明和爸爸所走的路程與步行時(shí)間的關(guān)系式為:s=30t+250,當(dāng)50t﹣500=30t+250,即t=37.5min時(shí),小明與爸爸第三次相遇;
(3)30t+250=2500,解得,t=75,則小明的爸爸到達(dá)公園需要75min,∵小明到達(dá)公園需要的時(shí)間是60min,∴小明希望比爸爸早20min到達(dá)公園,則小明在步行過程中停留的時(shí)間需減少5min.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x.
(1)在給定的平面直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向左平移3個(gè)單位,再沿y軸向下平移1個(gè)單位,請直接寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=mx2的圖像經(jīng)過點(diǎn)(1,2).
(1)求出m的值和頂點(diǎn)的坐標(biāo),并畫出這條拋物線;
(2)利用圖像回答:x取什么值時(shí),拋物線在直線y=2的上方?
(3)當(dāng)-1≤x≤2時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,DM,EN分別垂直平分AB和AC,交BC于點(diǎn)D,E,若∠DAE=50°°,則∠BAC=________,若△ADE的周長為19cm,則BC=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AB=弧AE,BE分別交AD,AC于點(diǎn)F,G.
(1)求證:FA=FG;
(2)若BD=DO=2,求弧EC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人們在長期的數(shù)學(xué)實(shí)踐中總結(jié)了許多解決數(shù)學(xué)問題的方法,形成了許多光輝的數(shù)學(xué)想法,其中轉(zhuǎn)化思想是中學(xué)教學(xué)中最活躍,最實(shí)用,也是最重要的數(shù)學(xué)思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問題比較常用的一種方法.
問題提出:求邊長分別為、、、的三角形面積.
問題解決:
在解答這個(gè)問題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出邊長分別為
、、的格點(diǎn)三角形(如圖),是角邊為1和2的直角三角形斜邊,是直角邊分別為1和3的直角三角形的斜邊,是直角邊分別為2和3的直角三角形斜邊,用一個(gè)大長方形的面積減去三個(gè)直角三角形的面積,這樣不需求的高,而借用網(wǎng)格就能計(jì)算它的面積.
(1)請直接寫出圖①中的面積為____________.
(2)類比遷移:求邊長分別為、、的三角形面積(請利用圖②的正方形網(wǎng)格畫出相應(yīng)的,并求出它的面積)
(3)思維拓展:求邊長分別為,的三角形的面積
(4)如圖(3),已知,以,為邊向外作正方形,正方形,連接,若,則六邊形 的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)44°,得到Rt△AB′C′,點(diǎn)C′恰好落在邊AB上,連接BB′,則∠BB′C′=__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O(0,0),A(0,1)是正方形OAA1B的兩個(gè)頂點(diǎn),以OA1對角線為邊作正方形OA1A2B1,再以正方形的對角線OA2作正方形OA2A3B2,…,依此規(guī)律,則點(diǎn)A7的坐標(biāo)是( )
A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,AD是BC邊上的中線,且AD=4,延長AD到點(diǎn)E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com