【題目】如圖,顯示了某次用計算機模擬隨機投擲一枚圖釘?shù)膶嶒灲Y(jié)果,下面有三個推斷:

當投擲次數(shù)是500時,計算機記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616

隨著實驗次數(shù)的增加,釘尖向上的概率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計釘尖向上的概率是0.618;

若再次用計算機模擬此實驗,則當投擲次數(shù)為1000時,釘尖向上的概率一定是0.620

其中合理的是_____.(填編號)

【答案】

【解析】

根據(jù)圖形和各個小題的說法可以判斷是否正確,從而可以解答本題.

當投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以此時“釘尖向上”的頻率是:308÷500=0.616,但釘尖向上的概率不一定是0.616,故①錯誤;

隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618.故②正確;

若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,“釘尖向上”的概率可能是0.620,但不一定是0.620,故③錯誤.

故答案為:②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將直角三角形 ABC 沿 AB 方向平移 AD 的長度得到三角形DEF,已知BE=5, EF=8, CG=2,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市決定購買A、B兩種樹苗對某段道路進行綠化改造,已知購買A種樹苗9棵,B種樹苗4棵,需要700元;購買A種樹苗3棵,B種樹苗5棵,則需要380元.
(1)求購買A、B兩種樹苗每顆各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購進A種樹苗不能少于60棵,且用于購買這兩種樹苗的資金不能超過5260元.若購進這兩種樹苗共100棵,則有哪幾種購買方案?哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標系xOy中的位置如圖所示.

1)作ABC關(guān)于點C成中心對稱的A1B1C1

2)將A1B1C1向右平移4個單位,作出平移后的A2B2C2

3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cm,A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DFBC于點F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

(3)當t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDAB,垂足為D,點EBC上,EF⊥AB,垂足為F,∠1=2

1)試說明:DGBC;

2)若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:

①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC中頂點A在x軸負半軸上,B、C在第二象限,對角線交于點D,若C、D兩點在反比例函數(shù) 的圖象上,且OABC的面積等于12,則k的值是

查看答案和解析>>

同步練習(xí)冊答案