【題目】已知,ABC中,∠ACB90°,ACBC,以AC為邊在同一平面內(nèi)作等邊ACD,連接BD,則∠ADB______________

【答案】45°或135°

【解析】

根據(jù)等邊三角形的性質(zhì)得出DC=BC,進而得出∠CDB=15°解答即可.

解:如圖:

∵△ACD是等邊三角形,

DC=AC=AD,∠DCA=ADC=60°,

AC=BC,

DC=BC,

∴∠CDB=

∴∠ADB=,

如圖,當(dāng)DAC的右側(cè)時,△ACD是等邊三角形,

∴∠ADC=60°,∠ACD=60°,CD=AC,

∵∠ACB=90°,

∴∠DCB=90°-60°=30°,

AC=BC

CD=BC,

則∠ADB=ADC+CDB=60°+75°=135°;

故答案為:45°或135°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖①,請把它們分割后拼接成一個新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.小東同學(xué)的做法是:設(shè)新正方形的邊長為xx0),依題意,割補前后圖形的面積相等,有x25,解得,由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線的長,于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.

請你參考小東同學(xué)的做法,解決如下問題:

現(xiàn)有10個邊長為1的正方形,排列形式如圖④,請把它們分割后拼接成一個新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.

(1)畫出△ABC關(guān)于直線n的對稱圖形△A′B′C′;

(2)直線m上存在一點P,使△APB的周長最;

在直線m上作出該點P;(保留畫圖痕跡)

②△APB的周長的最小值為   .(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是等邊三角形,

1)如圖1,點在線段上從點出發(fā)沿射線的速度運動,過點交線段于點,同時點從點出發(fā)沿的延長線以的速度運動,連接.設(shè)點的運動時間為秒.

①求證:是等邊三角形;

②當(dāng)點不與點重合時,求證:

2)如圖2,點的中點,作直線,點為直線上一點,連接,將線段繞點逆時針旋轉(zhuǎn)得到,則點在直線上運動的過程中,的最小值是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點P是等邊ABC內(nèi)的一點,連接PAPB、PC,以PB為邊作等邊BPD,連接CD,若∠APB150°,BD6CD8,APB的面積為( ).

A.48B.24C.12D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文教用品商店欲購進、兩種筆記本,用元購進的種筆記本與用元購進的種筆記本的數(shù)量相同,每本種筆記本的進價比每本種筆記本的進價貴.

1)求、兩種筆記本每本的進價分別為多少元?

2)若該商店種筆記本每本售價元,種筆記本每本售價元,準(zhǔn)備購進、兩種筆記本共本,且這兩種筆記本全部售出后總獲利不小于元,則最多購進種筆記本多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從點O出發(fā),沿OM的方向以1cm/s的速度運動,當(dāng)D不與點A重合時,將ACD繞點C逆時針方向旋轉(zhuǎn)60°得到BCE,連接DE

1)求證:CDE是等邊三角形(下列圖形中任選其一進行證明);

2)如圖2,當(dāng)點D在射線OM上運動時,是否存在以DE,B為頂點的三角形是直角三角形?若存在,求出運動時間t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y2x4的圖象分別交x、y軸于點AB,將直線AB繞點B按順時針方向旋轉(zhuǎn)45°,交x軸于點C,則直線BC的函數(shù)表達(dá)式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上的點D處,折痕交OA于點C,則弧AD的長為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案